ElasticStack安装(windows)

官网 : Elasticsearch 平台 --- 大规模查找实时答案 | Elastic

Elasticsearch

Elastic Stack(一套技术栈)

包含了数据的整合 =>提取 =>存储 =>使用,一整套!

各组件介绍:

  • beats 套件:从各种不同类型的文件/应用中采集数据。比如:a,b,cd,e,aa,bb,cc
  • Logstash:从多个采集器或数据源来抽取/转换数据,向 es 输送。比如:a,bb,cc
  • elasticsearch:存储、查询数据
  • kibana:可视化 es 的数据

百度网盘

链接:Elastic Stack_免费高速下载|百度网盘-分享无限制 (baidu.com)

提取码:e7vy

ElasticSearch

Elasticsearch : Set up Elasticsearch | Elasticsearch Guide [7.17] | Elastic

安装 : Install Elasticsearch with .zip on Windows | Elasticsearch Guide [7.17] | Elastic

windows 点击 zip 包下载

Kibana

kibana : Kibana---your window into Elastic | Kibana Guide [7.17] | Elastic

安装 : Install Kibana | Kibana Guide [7.17] | Elastic

windows 点击 zip包下载

只要是一套技术,所有版本必须一致!!!此处都用 7.17 版本。
输入命令 或者 点击elasticsearch.bat

java 复制代码
elasticsearch.bat

访问成功 , localhost:9200

与JDK版本不一致问题 : 解决

只需要改成 : JAVA="$ES_HOME/jdk/bin/java"

java 复制代码
JAVA="$ES_HOME/jdk/bin/java"
java 复制代码
# now set the path to java
if [ ! -z "$ES_JAVA_HOME" ]; then
  JAVA="$ES_JAVA_HOME/bin/java"
  JAVA_TYPE="ES_JAVA_HOME"
elif [ ! -z "$JAVA_HOME" ]; then
  # fallback to JAVA_HOME
  echo "warning: usage of JAVA_HOME is deprecated, use ES_JAVA_HOME" >&2
  #只需要把这个 JAVA="$JAVA_HOME/bin/java" 和 JAVA_TYPE="JAVA_HOME" 换成 
  #JAVA="$ES_HOME/jdk/bin/java"
  JAVA="$ES_HOME/jdk/bin/java"
else
  # use the bundled JDK (default)
  if [ "$(uname -s)" = "Darwin" ]; then
    # macOS has a different structure
    JAVA="$ES_HOME/jdk.app/Contents/Home/bin/java"
  else
    JAVA="$ES_HOME/jdk/bin/java"
  fi
  JAVA_TYPE="bundled JDK"
fi

IK分词器

下载地址 : GitHub - medcl/elasticsearch-analysis-ik: The IK Analysis plugin integrates Lucene IK analyzer into elasticsearch, support customized dictionary.
创建一个 plugins文件夹

plugins内再创建一个文件夹

解压

如果没有相应版本的分词器,可以改版本 ,在 plugin-descriptor.properties 文件里修改

安装IK分词器后启动es可能出现 访问被拒绝 的报错 , 可能是路径有 空格 导致的

Logstash

传输处理 数据的管道 , 数据同步的时候可能会用 , 不必须

文章 : Getting Started with Logstash | Logstash Reference [7.17] | Elastic

下载地址 : Past Releases of Elastic Stack Software | Elastic

好处:用起来方便,插件多

缺点:成本更大、一般要配合其他组件使用(比如 kafka)


这期就到这里 , 下期见 !

相关推荐
Yusei_05232 小时前
迅速掌握Git通用指令
大数据·git·elasticsearch
一只栖枝8 小时前
华为 HCIE 大数据认证中 Linux 命令行的运用及价值
大数据·linux·运维·华为·华为认证·hcie·it
喂完待续12 小时前
Apache Hudi:数据湖的实时革命
大数据·数据仓库·分布式·架构·apache·数据库架构
青云交12 小时前
Java 大视界 -- 基于 Java 的大数据可视化在城市交通拥堵治理与出行效率提升中的应用(398)
java·大数据·flink·大数据可视化·拥堵预测·城市交通治理·实时热力图
还是大剑师兰特18 小时前
Flink面试题及详细答案100道(1-20)- 基础概念与架构
大数据·flink·大剑师·flink面试题
水无痕simon20 小时前
5 索引的操作
数据库·elasticsearch
SEO_juper20 小时前
AI 搜索时代:引领变革,重塑您的 SEO 战略
人工智能·搜索引擎·seo·数字营销·seo优化
189228048611 天前
NY243NY253美光固态闪存NY257NY260
大数据·网络·人工智能·缓存
Blossom.1181 天前
把 AI 推理塞进「 8 位 MCU 」——0.5 KB RAM 跑通关键词唤醒的魔幻之旅
人工智能·笔记·单片机·嵌入式硬件·深度学习·机器学习·搜索引擎
武子康1 天前
大数据-70 Kafka 日志清理:删除、压缩及混合模式最佳实践
大数据·后端·kafka