ElasticStack安装(windows)

官网 : Elasticsearch 平台 --- 大规模查找实时答案 | Elastic

Elasticsearch

Elastic Stack(一套技术栈)

包含了数据的整合 =>提取 =>存储 =>使用,一整套!

各组件介绍:

  • beats 套件:从各种不同类型的文件/应用中采集数据。比如:a,b,cd,e,aa,bb,cc
  • Logstash:从多个采集器或数据源来抽取/转换数据,向 es 输送。比如:a,bb,cc
  • elasticsearch:存储、查询数据
  • kibana:可视化 es 的数据

百度网盘

链接:Elastic Stack_免费高速下载|百度网盘-分享无限制 (baidu.com)

提取码:e7vy

ElasticSearch

Elasticsearch : Set up Elasticsearch | Elasticsearch Guide [7.17] | Elastic

安装 : Install Elasticsearch with .zip on Windows | Elasticsearch Guide [7.17] | Elastic

windows 点击 zip 包下载

Kibana

kibana : Kibana---your window into Elastic | Kibana Guide [7.17] | Elastic

安装 : Install Kibana | Kibana Guide [7.17] | Elastic

windows 点击 zip包下载

只要是一套技术,所有版本必须一致!!!此处都用 7.17 版本。
输入命令 或者 点击elasticsearch.bat

java 复制代码
elasticsearch.bat

访问成功 , localhost:9200

与JDK版本不一致问题 : 解决

只需要改成 : JAVA="$ES_HOME/jdk/bin/java"

java 复制代码
JAVA="$ES_HOME/jdk/bin/java"
java 复制代码
# now set the path to java
if [ ! -z "$ES_JAVA_HOME" ]; then
  JAVA="$ES_JAVA_HOME/bin/java"
  JAVA_TYPE="ES_JAVA_HOME"
elif [ ! -z "$JAVA_HOME" ]; then
  # fallback to JAVA_HOME
  echo "warning: usage of JAVA_HOME is deprecated, use ES_JAVA_HOME" >&2
  #只需要把这个 JAVA="$JAVA_HOME/bin/java" 和 JAVA_TYPE="JAVA_HOME" 换成 
  #JAVA="$ES_HOME/jdk/bin/java"
  JAVA="$ES_HOME/jdk/bin/java"
else
  # use the bundled JDK (default)
  if [ "$(uname -s)" = "Darwin" ]; then
    # macOS has a different structure
    JAVA="$ES_HOME/jdk.app/Contents/Home/bin/java"
  else
    JAVA="$ES_HOME/jdk/bin/java"
  fi
  JAVA_TYPE="bundled JDK"
fi

IK分词器

下载地址 : GitHub - medcl/elasticsearch-analysis-ik: The IK Analysis plugin integrates Lucene IK analyzer into elasticsearch, support customized dictionary.
创建一个 plugins文件夹

plugins内再创建一个文件夹

解压

如果没有相应版本的分词器,可以改版本 ,在 plugin-descriptor.properties 文件里修改

安装IK分词器后启动es可能出现 访问被拒绝 的报错 , 可能是路径有 空格 导致的

Logstash

传输处理 数据的管道 , 数据同步的时候可能会用 , 不必须

文章 : Getting Started with Logstash | Logstash Reference [7.17] | Elastic

下载地址 : Past Releases of Elastic Stack Software | Elastic

好处:用起来方便,插件多

缺点:成本更大、一般要配合其他组件使用(比如 kafka)


这期就到这里 , 下期见 !

相关推荐
PersistJiao32 分钟前
在 Spark RDD 中,sortBy 和 top 算子的各自适用场景
大数据·spark·top·sortby
2301_8112743144 分钟前
大数据基于Spring Boot的化妆品推荐系统的设计与实现
大数据·spring boot·后端
Yz98761 小时前
hive的存储格式
大数据·数据库·数据仓库·hive·hadoop·数据库开发
青云交1 小时前
大数据新视界 -- 大数据大厂之 Hive 数据导入:多源数据集成的策略与实战(上)(3/ 30)
大数据·数据清洗·电商数据·数据整合·hive 数据导入·多源数据·影视娱乐数据
武子康1 小时前
大数据-230 离线数仓 - ODS层的构建 Hive处理 UDF 与 SerDe 处理 与 当前总结
java·大数据·数据仓库·hive·hadoop·sql·hdfs
武子康1 小时前
大数据-231 离线数仓 - DWS 层、ADS 层的创建 Hive 执行脚本
java·大数据·数据仓库·hive·hadoop·mysql
时差9531 小时前
Flink Standalone集群模式安装部署
大数据·分布式·flink·部署
锵锵锵锵~蒋1 小时前
实时数据开发 | 怎么通俗理解Flink容错机制,提到的checkpoint、barrier、Savepoint、sink都是什么
大数据·数据仓库·flink·实时数据开发
二进制_博客1 小时前
Flink学习连载文章4-flink中的各种转换操作
大数据·学习·flink
大数据编程之光1 小时前
Flink入门介绍
大数据·flink