Flink 侧输出流(SideOutput)

🌸在平时大部分的 DataStream API 的算子的输出是单一输出,也就是某一种或者说某一类数据流,流向相同的地方。

🌸**在处理不同的流中,除了 split 算子,可以将一条流分成多条流,这些流的数据类型也都相同。**ProcessFunction 的 side outputs 功能可以产生多条流,并且这些流的数据类型可以不一样。一个 side output 可以定义为 OutputTag[X]对象,X 是输出流的数据类型。process function 可以通过 Context 对象发射一个事件到一个或者多个 side outputs。

当使用旁路输出时,首先需要定义一个OutputTag来标识一个旁路输出流

Scala 复制代码
val OutPut=OutputTag[String]("side-output")

注意:OutputTag是如何根据旁路输出流包含的元素类型typed的

✨可以通过以下几种函数发射数据到旁路输出

ProcessFunction

CoProcessFunction

ProcessWindowFunction

ProcessAllWindowFunction

Scala 复制代码
//将含有特殊字符串的流区分开,数据由两个定义好的工具类向Kafka灌入不同内容的数据,
//然后通过侧输出流(SideOutput)将不同的流进行分离,得到不同的输出

import com.alibaba.fastjson.JSON
import com.tech.bean.Person_t
import com.tech.util.KafkaSourceUtil
import org.apache.flink.configuration.Configuration
import org.apache.flink.streaming.api.datastream.DataStream
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment
import org.apache.flink.streaming.api.functions.ProcessFunction
import org.apache.flink.streaming.api.scala._
import org.apache.flink.util.Collector

object sideOutputPerson_t {
  def main(args: Array[String]): Unit = {
    // UI地址访问:http://localhost:8081/#/job/running
    val env = StreamExecutionEnvironment.createLocalEnvironmentWithWebUI(new Configuration())

    val ksu = new KafkaSourceUtil("person_t", "test-consumer-group")
    val dstream = env.addSource(ksu.getSouceInfo())

    // 首先需要定义一个OutputTag来标识一个旁路输出流
    val outputTag = new OutputTag[String]("person_t_side-output")

    val mainDataStream = dstream
      .map(line => {
        JSON.parseObject(line, classOf[Person_t])
      })

    val sideOutput = mainDataStream.process(new ProcessFunction[Person_t, String] {
      override def processElement(
                                   value: Person_t,
                                   ctx: ProcessFunction[Person_t, String]#Context,
                                   out: Collector[String]): Unit = {
        if (!value.getName.contains("_side")) {
          out.collect(value.toString)
        } else {
          // 测输出流输出的部分
          ctx.output(outputTag, "sideOutput-> 带有_side标识的数据名称" + value.getName)
        }
      }
    })

    val sideOutputStream: DataStream[String] = sideOutput.getSideOutput(outputTag)

    // 测输出流处理
    sideOutputStream.print("测输出流")

    // 常规数据处理
    sideOutput.print("常规数据")

    env.execute("outSideput")
  }
}
相关推荐
Hello.Reader5 小时前
用 Flink SQL 搭建一个实时统计应用Kafka → Flink → MySQL 实战
sql·flink·kafka
路边草随风5 小时前
java 实现 flink 读 kafka 写 delta
java·大数据·flink·kafka
jiayong235 小时前
Elasticsearch 分词器完全指南:原理、类型与实战
大数据·elasticsearch·搜索引擎
科技测评-阿博5 小时前
深度解析:如何选择高效获客软件以加速企业级应用开发
大数据·人工智能
良策金宝AI5 小时前
工程AI ≠ 通用大模型:为什么电力设计需要垂直行业模型?
大数据·人工智能
Guheyunyi5 小时前
智能巡检系统:智能化管理的安全守护者
大数据·运维·服务器·人工智能·安全
路边草随风5 小时前
java 实现 flink 读 kafka 写 paimon
java·大数据·flink·kafka
茶杯6755 小时前
极睿iClip易视频——电商短视频智能运营的革新者
大数据·人工智能
Hello.Reader5 小时前
Flink SQL 查询(Queries)从 sqlQuery 到 executeSql
sql·flink·linq