Flink 侧输出流(SideOutput)

🌸在平时大部分的 DataStream API 的算子的输出是单一输出,也就是某一种或者说某一类数据流,流向相同的地方。

🌸**在处理不同的流中,除了 split 算子,可以将一条流分成多条流,这些流的数据类型也都相同。**ProcessFunction 的 side outputs 功能可以产生多条流,并且这些流的数据类型可以不一样。一个 side output 可以定义为 OutputTag[X]对象,X 是输出流的数据类型。process function 可以通过 Context 对象发射一个事件到一个或者多个 side outputs。

当使用旁路输出时,首先需要定义一个OutputTag来标识一个旁路输出流

Scala 复制代码
val OutPut=OutputTag[String]("side-output")

注意:OutputTag是如何根据旁路输出流包含的元素类型typed的

✨可以通过以下几种函数发射数据到旁路输出

ProcessFunction

CoProcessFunction

ProcessWindowFunction

ProcessAllWindowFunction

Scala 复制代码
//将含有特殊字符串的流区分开,数据由两个定义好的工具类向Kafka灌入不同内容的数据,
//然后通过侧输出流(SideOutput)将不同的流进行分离,得到不同的输出

import com.alibaba.fastjson.JSON
import com.tech.bean.Person_t
import com.tech.util.KafkaSourceUtil
import org.apache.flink.configuration.Configuration
import org.apache.flink.streaming.api.datastream.DataStream
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment
import org.apache.flink.streaming.api.functions.ProcessFunction
import org.apache.flink.streaming.api.scala._
import org.apache.flink.util.Collector

object sideOutputPerson_t {
  def main(args: Array[String]): Unit = {
    // UI地址访问:http://localhost:8081/#/job/running
    val env = StreamExecutionEnvironment.createLocalEnvironmentWithWebUI(new Configuration())

    val ksu = new KafkaSourceUtil("person_t", "test-consumer-group")
    val dstream = env.addSource(ksu.getSouceInfo())

    // 首先需要定义一个OutputTag来标识一个旁路输出流
    val outputTag = new OutputTag[String]("person_t_side-output")

    val mainDataStream = dstream
      .map(line => {
        JSON.parseObject(line, classOf[Person_t])
      })

    val sideOutput = mainDataStream.process(new ProcessFunction[Person_t, String] {
      override def processElement(
                                   value: Person_t,
                                   ctx: ProcessFunction[Person_t, String]#Context,
                                   out: Collector[String]): Unit = {
        if (!value.getName.contains("_side")) {
          out.collect(value.toString)
        } else {
          // 测输出流输出的部分
          ctx.output(outputTag, "sideOutput-> 带有_side标识的数据名称" + value.getName)
        }
      }
    })

    val sideOutputStream: DataStream[String] = sideOutput.getSideOutput(outputTag)

    // 测输出流处理
    sideOutputStream.print("测输出流")

    // 常规数据处理
    sideOutput.print("常规数据")

    env.execute("outSideput")
  }
}
相关推荐
火火PM打怪中3 小时前
产品经理如何绘制服务蓝图(Service Blueprint)
大数据·产品经理
Elastic 中国社区官方博客11 小时前
在 Windows 上使用 Docker 运行 Elastic Open Crawler
大数据·windows·爬虫·elasticsearch·搜索引擎·docker·容器
一切顺势而行13 小时前
Flink cdc 使用总结
大数据·flink
淦暴尼15 小时前
基于spark的二手房数据分析可视化系统
大数据·分布式·数据分析·spark
expect7g15 小时前
Flink-反压-1.基本概念
后端·flink
Ashlee_code15 小时前
裂变时刻:全球关税重构下的券商交易系统跃迁路线图(2025-2027)
java·大数据·数据结构·python·云原生·区块链·perl
Flink_China15 小时前
淘天AB实验分析平台Fluss落地实践:更适合实时OLAP的消息队列
大数据·flink
阿里云大数据AI技术16 小时前
云上AI推理平台全掌握 (4):大模型分发加速
大数据·人工智能·llm
1892280486117 小时前
NW972NW974美光固态闪存NW977NW981
大数据·服务器·网络·人工智能·性能优化
黄雪超17 小时前
Kafka——无消息丢失配置怎么实现?
大数据·分布式·kafka