#LLM入门|Prompt#1.8_聊天机器人_Chatbot

聊天机器人设计

  • 以会话形式进行交互,接受一系列消息作为输入,并返回模型生成的消息作为输出。
  • 原本设计用于简便多轮对话,但同样适用于单轮任务。

设计思路

  • 个性化特性:通过定制模型的训练数据和参数,使机器人拥有特定的个性化特点。
  • 专门任务设计:针对特定任务或行为进行设计,模型可针对该任务进行Fine-tune,提高效果和准确性。

优势

  • 简化开发:减少了构建聊天机器人所需的工作量和复杂度。
  • 灵活性:模型可根据需求进行定制,适应不同的应用场景和用户需求。

应用场景

  • 客服机器人:提供自然、有效的客户支持。
  • 教育助手:帮助学生解答问题、提供学习指导。
  • 娱乐休闲:提供有趣的对话、游戏等娱乐内容。

利用大型语言模型构建定制聊天机器人,为用户提供更加个性化、高效的交互体验,是人工智能技术在对话系统领域的重要应用之一。

一、给定身份

**get_completion**** 方法**

  • 适用于单轮对话。
  • 将 Prompt 放入类似用户消息的对话框中。

**get_completion_from_messages**** 方法**

  • 传入一个消息列表,这些消息可以来自不同的角色。
  • 第一条消息作为系统消息,提供总体指示。
  • 系统消息用于设置助手的行为和角色,引导其回应。
  • 可以想象系统消息在助手的耳边低语,不让用户注意到。
  • 用户可以与助手交替,提供对话上下文。

在构建聊天机器人时,您的角色可以是:

  • 用户 (user)
  • 助手 (assistant)

这些方法有助于引导助手的回应并设置对话的上下文,提供更加个性化和贴切的交互体验。

python 复制代码
import openai

# 下文第一个函数即tool工具包中的同名函数,此处展示出来以便于读者对比
def get_completion(prompt, model="gpt-3.5-turbo"):
    messages = [{"role": "user", "content": prompt}]
    response = openai.ChatCompletion.create(
        model=model,
        messages=messages,
        temperature=0, # 控制模型输出的随机程度
    )
    return response.choices[0].message["content"]

def get_completion_from_messages(messages, model="gpt-3.5-turbo", temperature=0):
    response = openai.ChatCompletion.create(
        model=model,
        messages=messages,
        temperature=temperature, # 控制模型输出的随机程度
    )
#     print(str(response.choices[0].message))
    return response.choices[0].message["content"]

1.1 讲笑话

python 复制代码
# 中文
messages =  [  
{'role':'system', 'content':'你是一个像莎士比亚一样说话的助手。'},    
{'role':'user', 'content':'给我讲个笑话'},   
{'role':'assistant', 'content':'鸡为什么过马路'},   
{'role':'user', 'content':'我不知道'}  ]

1.2 友好的聊天机器人

python 复制代码
# 中文
messages =  [  
{'role':'system', 'content':'你是个友好的聊天机器人。'},    
{'role':'user', 'content':'Hi, 我是Isa。'}  ]
response = get_completion_from_messages(messages, temperature=1)
print(response)

二、构建上下文

python 复制代码
# 中文
messages =  [  
{'role':'system', 'content':'你是个友好的聊天机器人。'},
{'role':'user', 'content':'Hi, 我是Isa'},
{'role':'assistant', 'content': "Hi Isa! 很高兴认识你。今天有什么可以帮到你的吗?"},
{'role':'user', 'content':'是的,你可以提醒我, 我的名字是什么?'}  ]
response = get_completion_from_messages(messages, temperature=1)
print(response)

三、订餐机器人

这个机器人将被设计为自动收集用户信息,并接收来自比萨饼店的订单。

3.1 构建机器人

python 复制代码
def collect_messages(_):
    prompt = inp.value_input
    inp.value = ''
    context.append({'role':'user', 'content':f"{prompt}"})
    response = get_completion_from_messages(context) 
    context.append({'role':'assistant', 'content':f"{response}"})
    panels.append(
        pn.Row('User:', pn.pane.Markdown(prompt, width=600)))
    panels.append(
        pn.Row('Assistant:', pn.pane.Markdown(response, width=600, style={'background-color': '#F6F6F6'})))
 
    return pn.Column(*panels)

现在,我们将设置并运行这个 UI 来显示订单机器人。初始的上下文包含了包含菜单的系统消息,在每次调用时都会使用。此后随着对话进行,上下文也会不断增长。

!pip install panelCopy to clipboardErrorCopied

如果你还没有安装 panel 库(用于可视化界面),请运行上述指令以安装该第三方库。

# 中文
import panel as pn  # GUI
pn.extension()

panels = [] # collect display 

context = [{'role':'system', 'content':"""
你是订餐机器人,为披萨餐厅自动收集订单信息。
你要首先问候顾客。然后等待用户回复收集订单信息。收集完信息需确认顾客是否还需要添加其他内容。
最后需要询问是否自取或外送,如果是外送,你要询问地址。
最后告诉顾客订单总金额,并送上祝福。

请确保明确所有选项、附加项和尺寸,以便从菜单中识别出该项唯一的内容。
你的回应应该以简短、非常随意和友好的风格呈现。

菜单包括:

菜品:
意式辣香肠披萨(大、中、小) 12.95、10.00、7.00
芝士披萨(大、中、小) 10.95、9.25、6.50
茄子披萨(大、中、小) 11.95、9.75、6.75
薯条(大、小) 4.50、3.50
希腊沙拉 7.25

配料:
奶酪 2.00
蘑菇 1.50
香肠 3.00
加拿大熏肉 3.50
AI酱 1.50
辣椒 1.00

饮料:
可乐(大、中、小) 3.00、2.00、1.00
雪碧(大、中、小) 3.00、2.00、1.00
瓶装水 5.00
"""} ]  # accumulate messages


inp = pn.widgets.TextInput(value="Hi", placeholder='Enter text here...')
button_conversation = pn.widgets.Button(name="Chat!")

interactive_conversation = pn.bind(collect_messages, button_conversation)

dashboard = pn.Column(
    inp,
    pn.Row(button_conversation),
    pn.panel(interactive_conversation, loading_indicator=True, height=300),
)

dashboardCopy to clipboardErrorCopied

运行如上代码可以得到一个点餐机器人,下图展示了一个点餐的完整流程:

3.2 创建JSON摘要

此处我们另外要求模型创建一个 JSON 摘要,方便我们发送给订单系统。

因此我们需要在上下文的基础上追加另一个系统消息,作为另一条指示 (instruction) 。我们说创建一个刚刚订单的 JSON 摘要,列出每个项目的价格,字段应包括:

  1. 披萨,包括尺寸
  2. 配料列表
  3. 饮料列表
  4. 辅菜列表,包括尺寸,
  5. 总价格。

此处也可以定义为用户消息,不一定是系统消息。

请注意,这里我们使用了一个较低的温度,因为对于这些类型的任务,我们希望输出相对可预测。

messages =  context.copy()
messages.append(
{'role':'system', 'content':
'''创建上一个食品订单的 json 摘要。\
逐项列出每件商品的价格,字段应该是 1) 披萨,包括大小 2) 配料列表 3) 饮料列表,包括大小 4) 配菜列表包括大小 5) 总价
你应该给我返回一个可解析的Json对象,包括上述字段'''},    
)

response = get_completion_from_messages(messages, temperature=0)
print(response)Copy to clipboardErrorCopied

{
  "披萨": {
    "意式辣香肠披萨": {
      "大": 12.95,
      "中": 10.00,
      "小": 7.00
    },
    "芝士披萨": {
      "大": 10.95,
      "中": 9.25,
      "小": 6.50
    },
    "茄子披萨": {
      "大": 11.95,
      "中": 9.75,
      "小": 6.75
    }
  },
  "配料": {
    "奶酪": 2.00,
    "蘑菇": 1.50,
    "香肠": 3.00,
    "加拿大熏肉": 3.50,
    "AI酱": 1.50,
    "辣椒": 1.00
  },
  "饮料": {
    "可乐": {
      "大": 3.00,
      "中": 2.00,
      "小": 1.00
    },
    "雪碧": {
      "大": 3.00,
      "中": 2.00,
      "小": 1.00
    },
    "瓶装水": 5.00
  }
}Copy to clipboardErrorCopied

我们已经成功创建了自己的订餐聊天机器人。你可以根据自己的喜好和需求,自由地定制和修改机器人的系统消息,改变它的行为,让它扮演各种各样的角色,赋予它丰富多彩的知识。让我们一起探索聊天机器人的无限可能性吧!

相关推荐
ZHOU_WUYI5 小时前
3.langchain中的prompt模板 (few shot examples in chat models)
人工智能·langchain·prompt
小白不太白9505 小时前
设计模式之 外观模式
microsoft·设计模式·外观模式
Robot2516 小时前
Figure 02迎重大升级!!人形机器人独角兽[Figure AI]商业化加速
人工智能·机器人·微信公众平台
万里沧海寄云帆7 小时前
Word 插入分节符页码更新问题
windows·microsoft·word
FreeIPCC9 小时前
谈一下开源生态对 AI人工智能大模型的促进作用
大数据·人工智能·机器人·开源
龙的爹233311 小时前
论文翻译 | RECITATION-AUGMENTED LANGUAGE MODELS
人工智能·语言模型·自然语言处理·prompt·gpu算力
施努卡机器视觉12 小时前
电解车间铜业机器人剥片技术是现代铜冶炼过程中自动化和智能化的重要体现
运维·机器人·自动化
huaqianzkh15 小时前
学习C#中的Parallel类
windows·microsoft·c#
段传涛16 小时前
AI Prompt Engineering
人工智能·深度学习·prompt
孤华暗香17 小时前
吴恩达《提示词工程》(Prompt Engineering for Developers)课程详细笔记
人工智能·笔记·prompt