十一、线性代数二-矩阵的对角化:

目录

①矩阵对角化的概念:

​编辑

[② 矩阵对角化的特点:](#② 矩阵对角化的特点:)

③判断方阵是否可以对角化步骤:


①矩阵对角化的概念:

② 矩阵对角化的特点:

1、P 是由 方阵 A 的所有 特征向量 以列 的形式 组成的。

2、得到的对角矩阵是由 A 所有的 特征值组成。

3、

4、方阵对角化本质: A 相似于(通过初等变换) A特征值构成的对角矩阵

https://blog.csdn.net/qq_16555103/article/details/84862737#t34 -------- 矩阵相似(文章序言)

③判断方阵是否可以对角化步骤:

https://blog.csdn.net/qq_16555103/article/details/84862737 ---------- 特征值与特征向量(第二节)

1、首先:求出方阵所有的特征值:

2、判断:

① 如果所有的特征值都是单根,则A一定能对角化。

② 如果A的特征值有重根,如果 重跟的个数 特征向量的基础解系 的个数相同,则该方阵可以对角化。

例题:

相关推荐
愚公搬代码6 小时前
【愚公系列】《AI+直播营销》015-直播的选品策略(设计直播产品矩阵)
人工智能·线性代数·矩阵
paixingbang9 小时前
2026短视频矩阵服务商评测报告 星链引擎、河南云罗、数阶智能
大数据·线性代数·矩阵
scott1985129 小时前
NVIDIA GPU内部结构:高性能矩阵乘法内核剖析
线性代数·矩阵·gpu·nvidia·cuda
AI科技星13 小时前
能量绝对性与几何本源:统一场论能量方程的第一性原理推导、验证与范式革命
服务器·人工智能·科技·线性代数·算法·机器学习·生活
sunfove14 小时前
上帝的乐谱:从线性代数视角重构傅里叶变换 (FT) 的数学表达式
线性代数·机器学习·重构
victory04311 天前
pytorch 矩阵乘法和实际存储形状的差异
人工智能·pytorch·矩阵
AI科技星2 天前
引力与电磁的动力学耦合:变化磁场产生引力场与电场方程的第一性原理推导、验证与统一性意义
服务器·人工智能·科技·线性代数·算法·机器学习·生活
todoitbo2 天前
从零搭建鲲鹏 HPC 环境:从朴素矩阵乘法到高性能实现
线性代数·矩阵·鲲鹏·昇腾
lingzhilab2 天前
零知IDE——基于STMF103RBT6结合PAJ7620U2手势控制192位WS2812 RGB立方体矩阵
c++·stm32·矩阵
你要飞2 天前
Part 2 矩阵
笔记·线性代数·考研·矩阵