spark sql 的join调优

背景

spark sql中join操作是最耗费性能的操作,因为这涉及到数据的shuffle操作,如果由此导致数据倾斜更是会雪上加霜,那么如何优化join操作的性能呢?

join优化

方式一 broadcast广播:

如果是大表和小表的join操作,最简单的解决方式就是对小表进行broadcast操作,把小表的数据广播到各个executor的内存中,然后和大表进行join,这种方式是join优化的首选,不过也有硬伤,因为有个前提,broadcast的表要是小表,量不能太大

方式二 distributed by操作:

如果是两个大表之间进行join操作,影响性能的主要因素是数据倾斜,我们要进行尽量保证join的两张表发送到executor的数据的数量是一样的,而这个可以通过distributed by join(条件列)进行,这样可以提前把两个表的数据按照条件列分布好,在进行join操作时就不会发生数据倾斜的问题了

注:distributed by 条件列 是把数据按照条件列进行分区,分区的数量由set spark.sql.shuffle.partitions=600; 进行控制,此外,即使不是用于join操作,遇到表数据倾斜是我们也可以使用,例如:select * from Table distribute by rand(); 这样就可以保证每个分区的数据基本一致了

参考文献: https://blog.csdn.net/vipshop_fin_dev/article/details/95231696

相关推荐
SelectDB技术团队28 分钟前
Apache Doris 2025 Roadmap:构建 GenAI 时代实时高效统一的数据底座
大数据·数据库·数据仓库·人工智能·ai·数据分析·湖仓一体
你觉得2051 小时前
浙江大学朱霖潮研究员:《人工智能重塑科学与工程研究》以蛋白质结构预测为例|附PPT下载方法
大数据·人工智能·机器学习·ai·云计算·aigc·powerpoint
益莱储中国1 小时前
世界通信大会、嵌入式展及慕尼黑上海光博会亮点回顾
大数据
Loving_enjoy2 小时前
基于Hadoop的明星社交媒体影响力数据挖掘平台:设计与实现
大数据·hadoop·数据挖掘
浮尘笔记2 小时前
go-zero使用elasticsearch踩坑记:时间存储和展示问题
大数据·elasticsearch·golang·go
XiaoLeisj2 小时前
【MyBatis】深入解析 MyBatis XML 开发:增删改查操作和方法命名规范、@Param 重命名参数、XML 返回自增主键方法
xml·java·数据库·spring boot·sql·intellij-idea·mybatis
碳基学AI3 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义免费下载方法
大数据·人工智能·python·gpt·算法·语言模型·集成学习
一个天蝎座 白勺 程序猿4 小时前
大数据(4.6)Hive执行引擎选型终极指南:MapReduce/Tez/Spark性能实测×万亿级数据资源配置公式
大数据·hive·mapreduce
HelpHelp同学5 小时前
信息混乱难查找?三步搭建高效帮助中心解决难题
大数据·人工智能·知识库管理系统
TDengine (老段)11 小时前
TDengine 中的关联查询
大数据·javascript·网络·物联网·时序数据库·tdengine·iotdb