spark sql 的join调优

背景

spark sql中join操作是最耗费性能的操作,因为这涉及到数据的shuffle操作,如果由此导致数据倾斜更是会雪上加霜,那么如何优化join操作的性能呢?

join优化

方式一 broadcast广播:

如果是大表和小表的join操作,最简单的解决方式就是对小表进行broadcast操作,把小表的数据广播到各个executor的内存中,然后和大表进行join,这种方式是join优化的首选,不过也有硬伤,因为有个前提,broadcast的表要是小表,量不能太大

方式二 distributed by操作:

如果是两个大表之间进行join操作,影响性能的主要因素是数据倾斜,我们要进行尽量保证join的两张表发送到executor的数据的数量是一样的,而这个可以通过distributed by join(条件列)进行,这样可以提前把两个表的数据按照条件列分布好,在进行join操作时就不会发生数据倾斜的问题了

注:distributed by 条件列 是把数据按照条件列进行分区,分区的数量由set spark.sql.shuffle.partitions=600; 进行控制,此外,即使不是用于join操作,遇到表数据倾斜是我们也可以使用,例如:select * from Table distribute by rand(); 这样就可以保证每个分区的数据基本一致了

参考文献: https://blog.csdn.net/vipshop_fin_dev/article/details/95231696

相关推荐
2501_9414043113 小时前
绿色科技与可持续发展:科技如何推动环境保护与资源管理
大数据·人工智能
swanwei13 小时前
量子科技对核心产业的颠覆性影响及落地时间表(全文2500字)
大数据·网络·人工智能·程序人生·量子计算
isNotNullX17 小时前
数据中台有什么用?数据仓库和数据中台怎么选?
大数据·数据仓库·人工智能·数据中台
杨云龙UP17 小时前
【MySQL逻辑备份】基于mysqldump的MySQL 8.0全量逻辑备份脚本
linux·运维·数据库·sql·mysql·mssql
roman_日积跬步-终至千里18 小时前
【AI Engineering】Should I build this AI application?—AI应用决策框架与实践指南
大数据·人工智能
DolphinScheduler社区18 小时前
图解 Apache DolphinScheduler 如何配置飞书告警
java·大数据·开源·飞书·告警·任务调度·海豚调度
稚辉君.MCA_P8_Java18 小时前
通义千问 SpringBoot 性能优化全景设计(面向 Java 开发者)
大数据·hadoop·spring boot·分布式·架构
SeaTunnel18 小时前
Apache SeaTunnel 如何将 CDC 数据流转换为 Append-Only 模式?
大数据·开源·apache·开发者·seatunnel·转换插件
万山y18 小时前
git remote add做了什么
大数据·git·elasticsearch
百度Geek说19 小时前
百度大数据成本治理实践
hadoop·spark