spark sql 的join调优

背景

spark sql中join操作是最耗费性能的操作,因为这涉及到数据的shuffle操作,如果由此导致数据倾斜更是会雪上加霜,那么如何优化join操作的性能呢?

join优化

方式一 broadcast广播:

如果是大表和小表的join操作,最简单的解决方式就是对小表进行broadcast操作,把小表的数据广播到各个executor的内存中,然后和大表进行join,这种方式是join优化的首选,不过也有硬伤,因为有个前提,broadcast的表要是小表,量不能太大

方式二 distributed by操作:

如果是两个大表之间进行join操作,影响性能的主要因素是数据倾斜,我们要进行尽量保证join的两张表发送到executor的数据的数量是一样的,而这个可以通过distributed by join(条件列)进行,这样可以提前把两个表的数据按照条件列分布好,在进行join操作时就不会发生数据倾斜的问题了

注:distributed by 条件列 是把数据按照条件列进行分区,分区的数量由set spark.sql.shuffle.partitions=600; 进行控制,此外,即使不是用于join操作,遇到表数据倾斜是我们也可以使用,例如:select * from Table distribute by rand(); 这样就可以保证每个分区的数据基本一致了

参考文献: https://blog.csdn.net/vipshop_fin_dev/article/details/95231696

相关推荐
Johny_Zhao1 小时前
Vmware workstation安装部署微软SCCM服务系统
网络·人工智能·python·sql·网络安全·信息安全·微软·云计算·shell·系统运维·sccm
markuszhang3 小时前
Elasticsearch 官网阅读之 Term-level Queries
大数据·elasticsearch·搜索引擎
Hello World......4 小时前
Java求职面试:从核心技术到大数据与AI的场景应用
大数据·java面试·技术栈·互联网大厂·ai服务
kaixiang3004 小时前
sqli-labs靶场23-28a关(过滤)
数据库·sql
张伯毅5 小时前
Flink SQL 将kafka topic的数据写到另外一个topic里面
sql·flink·kafka
python算法(魔法师版)6 小时前
.NET NativeAOT 指南
java·大数据·linux·jvm·.net
星川皆无恙6 小时前
大模型学习:Deepseek+dify零成本部署本地运行实用教程(超级详细!建议收藏)
大数据·人工智能·学习·语言模型·架构
L耀早睡7 小时前
mapreduce打包运行
大数据·前端·spark·mapreduce
姬激薄7 小时前
MapReduce打包运行
大数据·mapreduce
计算机人哪有不疯的7 小时前
Mapreduce初使用
大数据·mapreduce