内存计算研究进展-针对机器学习的近数据计算架构

针对机器学习的近数据计算架构代表性工作有: Georgia Institute of Technology的BSSync (bounded staled sync) 和 Neurocube,Advanced Micro Devices 的 CoML,具体如下。

1 BSSync

BSSync指出,在并行实现的机器学习应用中,原子操作用来保障无锁状态下算法的收敛,但带来很大的同步开销,且同步产生的通信延迟不与占比大的计算延迟重叠。BSSync发现,在机器学习应用迭代收敛过程中,可以用未更新的中间数据进行计算,从而提出利用基于近数据计算的有边界一致性模型减少原子操作带来的延迟开销。图17是 BSSync系统结构,CPU 核里面增加了原子请求队列、控制寄存器以及区域表来实现边界一致性模型.实验显示,BSSync比机器学习应用在传统冯.诺依曼系统中的异步并行的实现快1.33倍。

2 Neurocube

Neurocube是一个针对神经网络计算设计的可编程、可扩展,且节能的近数据计算系统架构。图18 是 Neurocube架构,左边是普遍使用的NDC cube结构,右边是逻辑层设计。逻辑层采用了细粒度可编程的设计模型,以灵活支持祌经网络计算.其中,每 个 P E 有 多 个 M AC单元支持神经网络中最常用的乘加操作,同时还有存储权值的寄存器和缓存以及相应的计数器。

图19 是 Neurocube的执行流程.它首先将神经网络存储到NDC cube的存储单元中,包括每层数据、神经元状态、连接权值.当一个层处理好之后,与中央处理器交互一次,然后执行下一层。Neurocube通过对逻辑层硬件、数据映射方式、片上互联,以及编程方式的精心设计,使得祌经网络计算在NDC cube中能够高效执行。

实验显示,相比于GPU系统,Neurocube有 4 倍的每瓦计算效率提升,与 ASIC系统相比,灵活性更好、扩展能力更强。

不同于针对机器学习设计的注重优化乘加(MAC) 操作的近数据计算系统,C oM L lM 提出,虽然包含MAC操作的卷积层等计算占整个机器学习过程的比例大,但这些计算是计算密集型的,数据复用性好,计算/字节比率高(即一个字节从内存中读出来之后用来计算的次数多);事实上,机器学习过程中,约32%的时间用于数据密集型计算,这些计算的计算/字节比率低。图 2 0 展示了神经网络中低计算/字节比率的计算部分。CoM L 将这些低计算/字节比率的计算部分放在近数据计算端,把MAC等操作放在主处理器上做。

实验显示,C oM L 在机器学习的数据密集型计算上的加速达到了 2 0 倍,总体有14%的性能提升。

参考文献

毛海宇,舒继武,李飞,等. 内存计算研究进展. 中国科学:信息科学,2021, 51: 173-206, doi: 10.1360/SSI-2020-0037 M ao H Y, Shu J W , Li F , et al. D evelopm ent of processing-in-m em ory (in C hinese). Sci Sin Inform , 2021, 51: 173-206, doi: 10.1360/SSI-2020-0037

相关推荐
美狐美颜sdk35 分钟前
跨平台直播美颜SDK集成实录:Android/iOS如何适配贴纸功能
android·人工智能·ios·架构·音视频·美颜sdk·第三方美颜sdk
DeepSeek-大模型系统教程1 小时前
推荐 7 个本周 yyds 的 GitHub 项目。
人工智能·ai·语言模型·大模型·github·ai大模型·大模型学习
郭庆汝1 小时前
pytorch、torchvision与python版本对应关系
人工智能·pytorch·python
小雷FansUnion3 小时前
深入理解MCP架构:智能服务编排、上下文管理与动态路由实战
人工智能·架构·大模型·mcp
资讯分享周3 小时前
扣子空间PPT生产力升级:AI智能生成与多模态创作新时代
人工智能·powerpoint
慌糖4 小时前
微服务介绍
微服务·云原生·架构
叶子爱分享4 小时前
计算机视觉与图像处理的关系
图像处理·人工智能·计算机视觉
鱼摆摆拜拜4 小时前
第 3 章:神经网络如何学习
人工智能·神经网络·学习
一只鹿鹿鹿4 小时前
信息化项目验收,软件工程评审和检查表单
大数据·人工智能·后端·智慧城市·软件工程
张较瘦_4 小时前
[论文阅读] 人工智能 | 深度学习系统崩溃恢复新方案:DaiFu框架的原位修复技术
论文阅读·人工智能·深度学习