代码随想录算法训练营第59天(动态规划16 ● 583. 两个字符串的删除操作 ● 72. 编辑距离 ● 编辑距离总结篇

动态规划part16

583. 两个字符串的删除操作

本题和动态规划:115.不同的子序列 相比,其实就是两个字符串都可以删除了,情况虽说复杂一些,但整体思路是不变的。

题目链接:583. 两个字符串的删除操作

文章/视频讲解:583. 两个字符串的删除操作

解题思路

  1. 确定dp数组以及下标的含义
    dp[i][j]:以i-1为结尾的字符串word1,和以j-1位结尾的字符串word2,想要达到相等,所需要删除元素的最少次数。
  2. 确定递推公式
  • 当word1[i - 1] 与 word2[j - 1]相同的时候 dp[i][j] = dp[i - 1][j - 1];
  • 当word1[i - 1] 与 word2[j - 1]不同时dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1});
    有三种情况:
    情况一:删word1[i - 1],最少操作次数为dp[i - 1][j] + 1
    情况二:删word2[j - 1],最少操作次数为dp[i][j - 1] + 1
    情况三:同时删word1[i - 1]和word2[j - 1],操作的最少次数为dp[i - 1][j - 1] + 2
    那最后当然是取最小值
  1. dp数组初始化
    dp[i][0] = i dp[0][j] = j;
  2. 确定遍历顺序
  3. 举例推导dp数组
java 复制代码
// 思路1
class Solution {
    public int minDistance(String word1, String word2) {
        int[][] dp = new int[word1.length() + 1][word2.length() + 1];

        for (int i = 0; i < word1.length() + 1; i++) dp[i][0] = i;
        for (int j = 0; j < word2.length() + 1; j++) dp[0][j] = j;

        for(int i = 1; i < word1.length() + 1; i++){            
            for(int j = 1; j < word2.length() + 1; j++){             
                if(word1.charAt(i - 1) == word2.charAt(j - 1)){
                    dp[i][j] = dp[i - 1][j - 1];
                }else{
                    dp[i][j] = Math.min(Math.min(dp[i - 1][j] + 1, dp[i][j - 1] + 1), dp[i - 1][j - 1] + 2);
                }
            }
        }
        return dp[word1.length()][word2.length()];

    }
}


// 思路2:视频讲解中最后提到的另一种那个思路 在1143.最长公共子序列 中的返回值return 中稍作修改
class Solution {
    public int minDistance(String word1, String word2) {
        int[][] dp = new int[word1.length() + 1][word2.length() + 1];

        for(int i = 1; i < word1.length() + 1; i++){
            
            for(int j = 1; j < word2.length() + 1; j++){
              
                if(word1.charAt(i - 1) == word2.charAt(j - 1)){
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                }else{
                    dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
                }
            }
        }
        return word1.length() + word2.length() - 2 * dp[word1.length()][word2.length()];

    }
}

72. 编辑距离

最终我们迎来了编辑距离这道题目,之前安排题目都是为了 编辑距离做铺垫。

题目链接:72. 编辑距离

文章/视频讲解:72. 编辑距离

解题思路

  1. 确定dp数组以及下标的含义
    dp[i][j] 表示以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]。
  2. 递推公式
java 复制代码
if (word1[i - 1] == word2[j - 1])
    不操作
if (word1[i - 1] != word2[j - 1])
    删  word1删除一个元素
    增  word1增加元素,即word2删除元素
    换
java 复制代码
class Solution {
    public int minDistance(String word1, String word2) {
        int[][] dp = new int[word1.length() + 1][word2.length() + 1];

        for(int i = 0; i < word1.length() + 1; i++) dp[i][0] = i;
        for(int j = 0; j < word2.length() + 1; j++) dp[0][j] = j;

        for(int i = 1; i < word1.length() + 1; i++){
            for(int j = 1; j < word2.length() + 1; j++){
                if(word1.charAt(i - 1) == word2.charAt(j - 1)){
                    dp[i][j] = dp[i - 1][j - 1];
                }else{
                    dp[i][j] = Math.min(Math.min(dp[i-1][j] + 1, dp[i][j-1] + 1), dp[i - 1][j - 1] + 1);
                }
            }
        }
        return dp[word1.length()][word2.length()];
    }
}

编辑距离总结篇

做一个总结吧

相关推荐
louisgeek6 分钟前
Java ConcurrentHashMap 和 SynchronizedMap 的区别
java
轴测君21 分钟前
3 无重复字符的最长子串
数据结构·算法·leetcode
2501_924731111 小时前
智慧城市交通场景误检率↓78%!陌讯多模态融合算法实战解析
人工智能·算法·目标检测·视觉检测·智慧城市
望获linux3 小时前
【Linux基础知识系列】第一百一十篇 - 使用Nmap进行网络安全扫描
java·linux·开发语言·前端·数据库·信息可视化·php
PAK向日葵4 小时前
【算法导论】XHS 0824 笔试题解
算法·面试
2501_924534895 小时前
智慧零售商品识别误报率↓74%!陌讯多模态融合算法在自助结算场景的落地优化
大数据·人工智能·算法·计算机视觉·目标跟踪·视觉检测·零售
盖雅工场5 小时前
连锁零售排班难?自动排班系统来解决
大数据·人工智能·物联网·算法·零售
Greedy Alg5 小时前
LeetCode 438. 找到字符串中所有的字母异位词
算法·leetcode·职场和发展
Q741_1475 小时前
C++ 力扣 76.最小覆盖子串 题解 优选算法 滑动窗口 每日一题
c++·算法·leetcode·双指针·滑动窗口
雷达学弱狗6 小时前
链式法则解释上游梯度应用
开发语言·前端·javascript