回归预测 | Matlab实现SSA-BiLSTM-Attention麻雀算法优化双向长短期记忆神经网络融合注意力机制多变量回归预测

回归预测 | Matlab实现SSA-BiLSTM-Attention麻雀算法优化双向长短期记忆神经网络融合注意力机制多变量回归预测

目录

    • [回归预测 | Matlab实现SSA-BiLSTM-Attention麻雀算法优化双向长短期记忆神经网络融合注意力机制多变量回归预测](#回归预测 | Matlab实现SSA-BiLSTM-Attention麻雀算法优化双向长短期记忆神经网络融合注意力机制多变量回归预测)

预测效果





基本描述

1.Matlab实现SSA-BiLSTM-Attention麻雀算法优化双向长短期记忆神经网络融合注意力机制多变量回归预测;

麻雀算法优化BiLSTM的学习率,隐藏层节点,正则化系数;

多头自注意力层 (Multihead-Self-Attention):Multihead-Self-Attention多头注意力机制是一种用于模型关注输入序列中不同位置相关性的机制。它通过计算每个位置与其他位置之间的注意力权重,进而对输入序列进行加权求和。注意力能够帮助模型在处理序列数据时,对不同位置的信息进行适当的加权,从而更好地捕捉序列中的关键信息。在时序预测任务中,注意力机制可以用于对序列中不同时间步之间的相关性进行建模。

2.运行环境为Matlab2023a及以上;

3.输入多个特征,输出单个变量,多变量回归预测;

4.data为数据集,main.m为主程序,运行即可,所有文件放在一个文件夹;

5.命令窗口输出R2、MSE、MAE、MAPE和MBE多指标评价;

程序设计

clike 复制代码
%%  参数设置
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行
tic
% restoredefaultpath

%%  导入数据
res =xlsread('data.xlsx','sheet1','A2:H104');

%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度

%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  划分训练集和测试集
M = size(P_train, 2);
N = size(P_test, 2);
%%  数据平铺
%   将数据平铺成1维数据只是一种处理方式
%   也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
%   但是应该始终和输入层数据结构保持一致
P_train =  double(reshape(P_train,f_, 1, 1, M));
P_test  =  double(reshape(P_test ,f_, 1, 1, N));

t_train = t_train';
t_test  = t_test' ;

%%  数据格式转换
for i = 1 : M
    p_train{i, 1} = P_train(:, :, 1, i);
end

for i = 1 : N
    p_test{i, 1}  = P_test( :, :, 1, i);
end


%% 优化函数
fobj = @(x)fical(x);
%%  优化算法参数设置
pop = 5;                               % 数量
Max_iter = 8;                          % 最大迭代次数
dim = 3;                               % 优化参数个数
lb = [1e-3, 32, 1e-3];                 % 参数取值下界(学习率,批大小,正则化系数)

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128690229

相关推荐
我感觉。1 天前
【深度学习—李宏毅教程笔记】各式各样的 Attention
人工智能·深度学习·attention·self-attention
終不似少年遊*9 天前
【NLP解析】多头注意力+掩码机制+位置编码:Transformer三大核心技术详解
人工智能·自然语言处理·大模型·nlp·transformer·注意力机制
风筝超冷11 天前
GPT - 多头注意力机制(Multi-Head Attention)模块
gpt·深度学习·attention
机器学习之心13 天前
回归预测 | Matlab实现RIME-CNN-GRU-Attention霜冰优化卷积门控循环单元注意力机制多变量回归预测
回归·attention·cnn-gru·注意力机制多变量回归预测·rime-cnn-gru·霜冰优化卷积门控循环单元
机器学习之心16 天前
回归预测 | Matlab实现NRBO-Transformer-GRU多变量回归预测
matlab·回归·transformer·多变量回归预测
机器学习之心1 个月前
分类预测 | Matlab实现BO-LSTM-Attention多特征分类预测
matlab·分类·lstm·attention·bo-lstm
zbdx不知名菜鸡1 个月前
self Attention为何除以根号dk?(全新角度)
transformer·attention·概率论
爱听歌的周童鞋1 个月前
Flash Attention原理讲解
attention·self-attention·flash attention
AINLPer1 个月前
Attention又升级!Moonshot | 提出MoE注意力架构:MoBA,提升LLM长文本推理效率
attention
xidianjiapei0012 个月前
5分钟速览深度学习经典论文 —— attention is all you need
人工智能·深度学习·transformer·attention·论文解读