【监督学习之决策树和随机森林】

曾梦想执剑走天涯,我是程序猿【AK】

目录

  • 简述概要
  • 知识图谱
    • [决策树(Decision Tree)](#决策树(Decision Tree))
    • [随机森林(Random Forest)](#随机森林(Random Forest))

简述概要

了解决策树和随机森林

知识图谱

决策树和随机森林都是机器学习中常用的算法,它们在处理分类和回归问题时表现出色。下面分别详解决策树和随机森林的相关概念和工作原理。

决策树(Decision Tree)

决策树是一种基于树形结构的机器学习模型,用于解决分类和回归问题。它通过递归地将数据集划分成更小的子集来工作,每个子集对应决策树中的一个节点。决策树的每个内部节点表示一个特征属性上的判断条件,每个分支代表一个可能的属性值,每个叶节点代表一个类别(对于分类问题)或一个具体数值(对于回归问题)。

构建决策树的关键步骤包括特征选择、决策树生成和剪枝。

  • 特征选择:选择最优划分特征,常用的准则有信息增益、增益率和基尼指数。
  • 决策树生成:根据选择的特征和阈值,递归地生成决策树。常见的决策树生成算法有ID3、C4.5和CART。
  • 剪枝:为了防止过拟合,可以通过剪枝来简化决策树。剪枝分为预剪枝和后剪枝两种。

随机森林(Random Forest)

随机森林是一种基于决策树的集成学习算法,它通过构建多个决策树并结合它们的输出来提高模型的泛化能力。随机森林的基本思想是利用多个弱学习器(即决策树)来构建一个强学习器。

随机森林的构建过程如下:

  1. 采样:从原始数据集中采用有放回抽样(Bootstrap)的方式抽取多个样本子集。
  2. 构建决策树:对每个样本子集独立地构建决策树。在构建过程中,通常会随机选择一部分特征进行划分,以增加模型的多样性。
  3. 集成:将多棵决策树的输出进行集成,通常采用投票或平均的方式得到最终的预测结果。

随机森林的优点包括:

  • 精度高:由于集成了多个决策树,随机森林通常具有较高的预测精度。
  • 鲁棒性强:对噪声和异常值不敏感,能够自动处理缺失值。
  • 可解释性好:可以输出特征的重要性排序,有助于理解数据的特征。
  • 并行化计算:可以并行地构建多棵决策树,提高计算效率。

总的来说,决策树是一种基于树形结构的分类和回归模型,而随机森林则是通过集成多个决策树来提高模型性能的集成学习算法。两者在机器学习中都有广泛的应用。

推荐链接:

https://www.nvidia.cn/glossary/data-science/random-forest/
https://rstudio-pubs-static.s3.amazonaws.com/304821_b150e48de7bb4252aa1ffcfd51f5ba61.html
https://guomin-h-a.github.io/2020/02/21/decision-tree-and-random-forest/
https://geek-docs.com/machine-learning/machine-learning-tutorial/random-forests.html

---- 永不磨灭的番号:我是AK

相关推荐
suke5 分钟前
RAG 已死,Agent 永生:理解 AI 检索的范式革命
人工智能·程序员·aigc
cooldream20097 分钟前
大模型分类与应用全景解析:从文本到多模态的智能演进
人工智能·ai·大模型基础
ECT-OS-JiuHuaShan11 分钟前
哥德尔不完备定理中的完备是什么?是还原论证的具足幻想。不还原就是完备,哥德尔搞不完定理
人工智能·数学建模·学习方法·几何学·量子计算·拓扑学·空间计算
i.ajls15 分钟前
强化学习入门-3(AC)
人工智能·深度学习·机器学习·actor-critic
Blossom.11819 分钟前
把AI“浓缩”到1KB:超紧凑型决策树在MCU上的极限优化实战
人工智能·python·单片机·深度学习·决策树·机器学习·数据挖掘
weixin_4296302626 分钟前
第四章 决策树
python·决策树·机器学习
努力努力再nuli29 分钟前
学习华为昇腾AI教材图像处理原理与应用部分Day1
图像处理·人工智能·学习
学术小白人29 分钟前
【IEEE出版 | 早鸟优惠本周截止】人工智能驱动图像处理与计算机视觉技术国际学术研讨会 (AIPCVT 2025)
图像处理·人工智能·计算机视觉
新知图书31 分钟前
A2A架构详解
人工智能·架构·ai agent·智能体·大模型应用
Freya冉冉41 分钟前
【PYTHON学习】推断聚类后簇的类型DAY18
python·学习·聚类