Phind-70B-运行速度提高4倍的同时,缩小了与GPT-4 Turbo在代码质量上的差距

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行! 订阅:https://rengongzhineng.io/

近日,科技界迎来了一个激动人心的消息:Phind-70B模型正式发布,这是目前为止最大、性能最强的模型。Phind-70B能够以每秒高达80个token的速度运行,为用户在技术话题上提供高质量的答案,极大地缩短了等待时间,提升了开发者的整体用户体验。

该模型是在CodeLlama-70B的基础上,通过对额外500亿token进行微调而来,带来了显著的性能提升,并支持高达32K token的上下文窗口。

在人类评估标准HumanEval上,Phind-70B以82.3%的高分超越了最新的GPT-4 Turbo(gpt-4-0125-preview)的81.1%。而在Meta的CRUXEval数据集上,尽管Phind-70B以59%的得分略低于GPT-4报告的62%,但在实际工作负载中的表现说明了Phind-70B在代码生成领域与GPT-4 Turbo处于同一质量水平,甚至在某些任务上表现更佳。Phind-70B展现出的主动性也超过了GPT-4 Turbo,在生成详细代码示例方面表现出更少的犹豫。

得益于在NVIDIA的H100 GPU上运行TensorRT-LLM库的优化,Phind-70B的运行速度是GPT-4 Turbo的四倍,达到每秒80个以上的token。该团队正在努力进一步提高Phind-70B的推理速度。

Phind-70B现已向公众免费开放试用,并无需登录。用户可以通过订阅Phind Pro获得更高的使用限制。

Phind团队对开源社区的热爱促使他们计划在未来几周内发布Phind-34B模型的权重,并计划及时公开Phind-70B的权重。

此外,Phind团队特别感谢他们的云服务合作伙伴SF Compute和AWS,在训练和部署Phind-70B方面提供了巨大的帮助。Meta和NVIDIA的支持也对项目的成功发挥了关键作用。

有趣的是,在Phind-70B的训练过程中,一块NVIDIA的H100 GPU因过热而"熔化",这一趣事也成为了该项目一个难忘的插曲。

https://www.phind.com/

相关推荐
小沈熬夜秃头中୧⍤⃝7 分钟前
IOPaint 远程修图:cpolar 内网穿透服务实现跨设备图片编辑
人工智能
Listennnn13 分钟前
ScanNet项目介绍
人工智能
陈哥聊测试14 分钟前
Vibe Coding火了,人人都是程序员?
人工智能·程序员·产品
Jinkxs22 分钟前
AI重塑金融风控:从传统规则到智能模型的信贷审批转型案例
大数据·人工智能
cwn_1 小时前
牛津大学xDeepMind 自然语言处理(1)
人工智能·深度学习·机器学习·自然语言处理
前端双越老师1 小时前
【干货】使用 langChian.js 实现掘金“智能总结” 考虑大文档和 token 限制
人工智能·langchain·node.js
leiya_1631 小时前
私有化部署本地大模型+function Calling+本地数据库
人工智能·ai·大模型
Dajiaonew2 小时前
Spring AI RAG 检索增强 应用
java·人工智能·spring·ai·langchain
z千鑫2 小时前
【OpenAI】 GPT-4o-realtime-preview 多模态、实时交互模型介绍+API的使用教程!
人工智能·gpt·语言模型·aigc
之歆2 小时前
大模型微调分布式训练-大模型压缩训练(知识蒸馏)-大模型推理部署(分布式推理与量化部署)-大模型评估测试(OpenCompass)
人工智能·笔记·python