论文STEERER人群计数,车辆计数以及农作物计数算法详解(pytorch)

论文下载:https://arxiv.org/pdf/2308.10468

代码下载:https://github.com/taohan10200/STEERER

HRNet论文下载:https://arxiv.org/pdf/1909.11065.pdf

MMCV代码:https://github.com/open-mmlab/mmcv

本文提出STEERER模型,通过选择性继承学习实现多尺度特征融合。模型采用FSIA算法从低到高分辨率融合特征,并使用CAM方法显示各尺度特征区域。实验表明,该模型在人群计数,车辆(TRANCOS)和玉米计数(MTC)任务中表现优异。可视化结果显示STEERER在生成密度图和定位方面优于基线模型,尤其擅长检测大型和小而密集的物体。跨域测试证实模型具有良好可移植性,适用于车辆、树木等多种场景的定位和计数任务。

目录

多尺度的研究现状

提出的方法

整体模型架构

多尺度特征表示

特征选择和继承自适应器

掩码选择和继承损失

[Patch-Winner 选择方法](#Patch-Winner 选择方法)

综合实验

数据比较

可视化结果说明

定位性能对比

消融实验研究

跨域测试


多尺度的研究现状

提出的方法

整体模型架构

如图2所示:在选择性继承学习的监督下,采用FSIA将多尺度特征从最低分辨率融合到最高分辨率。使用CAM方法来显示了每个尺度上的熟练区域。Inference只使用最高分辨率的预测图。密度图中的掩蔽斑块表示它们在损失计算过程中被忽略。

多尺度特征表示

特征选择和继承自适应器

(上面结构图的左下角图)

掩码选择和继承损失

Patch-Winner 选择方法

综合实验

数据比较

表5显示,直接应用STEERER评估车辆(TRANCOS)和玉米计数(MTC)时效果良好。对于车辆计数,我们进一步降低估计MAE。对于植物计数,我们的模型优于其他SoTAs,它们的MAE和MSE分别下降了12.9%和14.0%,显示出显著的改进。

可视化结果说明

图4展示了实际场景下密度图的质量和定位结果。在人群场景中,与AutoScale相比,STEERER和基线模型在生成密度图方面都表现出更高的精度。在物体定位方面,与基线和P2PNet相比,STEERER在检测大型物体方面表现出更强的泛化能力,如图4中的红框部分所示。此外,STEERER在识别小而密集的物体方面保持了其有效性(见图4黄框部分)。所提出的STEERER模型具有跨不同领域的可移植性,例如车辆、树和玉米的定位和计数。

定位性能对比

消融实验研究

跨域测试

相关推荐
qwerasda1238523 分钟前
Mask-RCNN右转交通标志识别训练与优化
python
郝学胜-神的一滴11 分钟前
何友院士《人工智能发展前沿》全景解读:从理论基石到产业变革
人工智能·python·深度学习·算法·机器学习
2401_8403652115 分钟前
cuda-gdb Could not find CUDA Debugger back-end.
人工智能
苍何fly23 分钟前
首个国产芯片训练的多模态 SOTA 模型,已免费开源!
人工智能·经验分享
2401_8414956425 分钟前
具身智能:从理论到现实,人工智能的下一场革命
人工智能·算法·机器人·硬件·具身智能·通用智能·专用智能
方见华Richard37 分钟前
对话量子场论:语言如何产生认知粒子V0.3
人工智能·交互·学习方法·原型模式·空间计算
wfeqhfxz258878242 分钟前
基于YOLO12-A2C2f-DFFN-DYT-Mona的铁件部件状态识别与分类系统_1
人工智能·分类·数据挖掘
2501_9415079442 分钟前
脊柱结构异常检测与分类:基于Cascade-RCNN和HRNetV2p-W32模型的改进方案
人工智能·分类·数据挖掘
划水的code搬运工小李43 分钟前
自制py功能包解析IMU航迹推算
python·imu·航迹推算
珊珊而川43 分钟前
MBE(Model-based Evaluation) LLM-as-a-Judge
人工智能