MySQL-七种SQL优化

一、插入数据

普通插入:

  1. 采用批量插入(一次插入的数据不建议超过1000条)
sql 复制代码
insert into tb_test values(1,'Tom'),(3, 'Cat'),(3, 'Jerry')....
  1. 手动提交事务
sql 复制代码
start transaction;
insert into tb_test values(1,'Tom'),(3, 'Cat'),(3, 'Jerry');
insert into tb_test values(4,'Tom'),(5, 'Cat'),(6, 'Jerry');
insert into tb_test values(7,'Tom'),(8, 'Cat'),(9, 'Jerry');
commit;
  1. 主键顺序插入性能高于乱序插入

大批量插入:

如果一次性需要插入大批量数据,使用insert语句插入性能较低,此时可以使用MySQL数据库提供的load指令插入。

bash 复制代码
# 客户端连接服务端时,加上参数 --local-infile
mysql --local-infile -u root -p
sql 复制代码
# 查看全局参数local_infile是否开启
select @@local_infile;
# 设置全局参数local_infile为1,开启从本地加载文件导入数据的开关
set global local_infile = 1;
# 执行load指令将准备好的数据,加载到表结构中
# 将sql100w.sql文件的数据加载到tb_user表中
# 用逗号分隔字段
load data local infile '/root/sql100w.sql' into table 'tb_user' fields terminated by ',' lines terminated by '\n';

二、主键优化

数据组织方式:在InnoDB存储引擎中,表数据都是根据主键顺序组织存放的,这种存储方式的表称为索引组织表(Index organized table, IOT)

  • 页分裂:页可以为空,也可以填充一般,也可以填充100%,每个页包含了2-N行数据(如果一行数据过大,会行溢出),根据主键排列。
  • 页合并:当删除一行记录时,实际上记录并没有被物理删除,只是记录被标记(flaged)为删除并且它的空间变得允许被其他记录声明使用。当页中删除的记录到达MERGE_THRESHOLD(默认为页的50%),InnoDB会开始寻找最靠近的页(前后)看看是否可以将这两个页合并以优化空间使用。

MERGE_THRESHOLD:合并页的阈值,可以自己设置,在创建表或创建索引时指定。

主键设计原则:

  • 满足业务需求的情况下,尽量降低主键的长度。
  • 插入数据时,尽量选择顺序插入,选择使用 AUTO_INCREMENT 自增主键。
  • 尽量不要使用 UUID 做主键或者是其他的自然主键,如身份证号。
  • 业务操作时,避免对主键的修改。

三、order by优化

在MySQL中排序分为以下两种清空:

  1. Using filesort:通过表的索引或全表扫描,读取满足条件的数据行,然后在排序缓冲区 sort buffer 中完成排序操作,所有不是通过索引直接返回排序结果的排序都叫 FileSort 排序。
  2. Using index:通过有序索引顺序扫描直接返回有序数据,这种情况即为 using index,不需要额外排序,操作效率高。
sql 复制代码
#创建索引,两个字段,全部降序或全部升序会走这个索引
create index idx_user_age_phone+aa on tb_user(age,phone);

#创建索引,一个升,一个降
create index idx_user_age_phone_ad on tb_user(age asc, phone desc);

总结:

  • 根据排序字段建立合适的索引,多字段排序时,也遵循最左前缀法则。
  • 尽量使用覆盖索引,少使用select *
  • 多字段排序,一个升序一个降序,此时需要注意联合索引在创建时的规则(ASC/DESC)。
  • 如果不可避免出现filesort,大数据量排序时,可以适当增大排序缓冲区大小 sort_buffer_size(默认256k)。

注: 在创建多列索引时,要根据业务需求,where子句中使用最频繁的一列放在最左边。

四、group by优化

  • 在分组操作时,可以通过索引来提高效率。
  • 分组操作时,索引的使用也是满足最左前缀法则的。

如索引为idx_user_pro_age_stat,则句式可以是select ... where profession order by age,这样也符合最左前缀法则。

五、limit优化

常见的问题: limit 2000000,10,此时需要 MySQL 排序前2000000条记录,但仅仅返回2000000 - 2000010的记录,其他记录丢弃,查询排序的代价非常大。
优化方案:一般分页查询时,通过创建覆盖索引能够比较好地提高性能,可以通过覆盖索引加子查询形式进行优化。

例如:

sql 复制代码
# 此语句耗时很长
select * from tb_sku limit 9000000, 10;
# 通过覆盖索引加快速度,直接通过主键索引进行排序及查询出id
select id from tb_sku order by id limit 9000000, 10;
# 通过子查询查出所有字段
select * from tb_sku as s, (select id from tb_sku order by id limit 9000000, 10) as a where s.id = a.id;

六、count优化

sql 复制代码
select count(*) from tb_user;
  • MyISAM 引擎把一个表的总行数存在了磁盘上,因此执行 count(*) 的时候会直接返回这个数,效率很高。
  • InnoDB 引擎在执行 count(*) 时,需要把数据一行一行地从引擎里面读出来,然后累计计数。
  • 优化方案:自己计数,如创建key-value表存储在内存或硬盘,或者是用redis。

count的几种用法:

  • 如果count函数的参数(count里面写的那个字段)不是NULL(字段值不为NULL),累计值就加一,最后返回累计值。
  • 用法:count(*)、count(主键)、count(字段)、count(1)。
  • count(主键)跟count(*)一样,因为主键不能为空;
  • count(字段)只计算字段值不为NULL的行;
  • count(1)引擎会为每行添加一个1,然后就count这个1,返回结果也跟count(*)一样;
  • count(null)返回0。

各种用法的性能:

  • count(主键):InnoDB引擎会遍历整张表,把每行的主键id值都取出来,返回给服务层,服务层拿到主键后,直接按行进行累加(主键不可能为空)。
  • count(字段):没有not null约束的话,InnoDB引擎会遍历整张表把每一行的字段值都取出来,返回给服务层,服务层判断是否为null,不为null,计数累加;有not null约束的话,InnoDB引擎会遍历整张表把每一行的字段值都取出来,返回给服务层,直接按行进行累加。
  • count(1):InnoDB 引擎遍历整张表,但不取值。服务层对于返回的每一层,放一个数字 1 进去,直接按行进行累加。
  • count(*):InnoDB 引擎并不会把全部字段取出来,而是专门做了优化,不取值,服务层直接按行进行累加。

按效率排序:count(字段) < count(主键) < count(1) < count(*),所以尽量使用 count(*)

七、update优化(避免行锁升级为表锁)

InnoDB 的行锁是针对索引加的锁,不是针对记录加的锁,并且该索引不能失效,否则会从行锁升级为表锁。

例如:
update student set no = '1' where id = 1; 这句由于id有主键索引,所以只会锁这一行;
update student set no = '1' where name = 'zheng'; 这句由于name没有索引,所以会把整张表都锁住进行数据更新,解决方法是给name字段添加索引;

相关推荐
该用户已不存在27 分钟前
MySQL 与 PostgreSQL,该怎么选?
数据库·mysql·postgresql
GoldenaArcher1 小时前
GraphQL 工程化篇 III:引入 Prisma 与数据库接入
数据库·后端·graphql
川石课堂软件测试1 小时前
自动化测试之 Cucumber 工具
数据库·功能测试·网络协议·测试工具·mysql·单元测试·prometheus
RestCloud1 小时前
StarRocks 数据分析加速:ETL 如何实现实时同步与高效查询
数据库
lang201509282 小时前
MySQL数据类型存储全解析
mysql
野猪亨利6672 小时前
Qt day1
开发语言·数据库·qt
siriuuus2 小时前
Linux MySQL 多实例部署与配置实践
linux·运维·mysql
本就一无所有 何惧重新开始2 小时前
Redis技术应用
java·数据库·spring boot·redis·后端·缓存
isaki1372 小时前
qt day1
开发语言·数据库·qt
流星白龙2 小时前
【Qt】4.项目文件解析
开发语言·数据库·qt