YOLOv5代码解读[02] models/yolov5l.yaml文件解析

文章目录

YOLOv5代码解读[02] models/yolov5l.yaml文件解析

yolov5l.yaml文件

python 复制代码
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 27  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc, anchors, False]],  # Detect(P3, P4, P5)
  ]

检测头1--->耦合头

python 复制代码
class Detect(nn.Module):
    stride = None  
    onnx_dynamic = False
    export = False
    def __init__(self, nc=80, anchors=(), Decoupled=False, ch=(), inplace=True):  
        super().__init__()
        # 是否解耦头
        self.decoupled = Decoupled
        # 类别数目
        self.nc = nc  
        # 每个anchor输出维度 
        self.no = nc + 5  
        # 检测层的输出数量(不同尺度个数) 
        self.nl = len(anchors)  
        # 每个尺度特征图的anchor数量
        self.na = len(anchors[0]) // 2  
        # 初始化步长init grid
        self.grid = [torch.zeros(1)] * self.nl    
        # 初始化anchor grid
        self.anchor_grid = [torch.zeros(1)] * self.nl  
        # self.register_buffer("a", torch.ones(2,3))  
        # register_buffer的作用是将torch.ones(2,3)这个tensor注册到模型的buffers()属性中,并命名为a,
        # 这代表a对应的是一个持久态,不会有梯度传播给它,但是能被模型的state_dict记录下来,可以理解为模型的常数。
        self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # (3,3,2) == (nl,na,2)
        # 检测头head输出卷积
        # 如果是解耦头
        if self.decoupled:
            self.m = nn.ModuleList(DecoupledHead(x, self.nc, anchors) for x in ch) 
        # 如果是耦合头
        else:
            self.m = nn.ModuleList(nn.Conv2d(x, self.no*self.na, 1) for x in ch) 
        # use in-place ops (e.g. slice assignment)
        self.inplace = inplace  
        
    def forward(self, x):
        # inference output
        z = []
        # 对于每个尺度的特征图来说
        for i in range(self.nl):
            # conv
            # P3: [1, 128, 80, 80]->[1, 3*(nc+5), 80, 80]
            # P4: [1, 256, 40, 40]->[1, 3*(nc+5), 40, 40]
            # P5: [1, 512, 20, 20]->[1, 3*(nc+5), 20, 20]
            x[i] = self.m[i](x[i])
            # 以coco数据集为例,x(bs,255,20,20) -> x(bs,3,20,20,85)   (x,y,w,h,c,c1,c2,.........)
            bs, _, ny, nx = x[i].shape
            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()

            # 推断过程inference
            if not self.training:
                # self.grid: [tensor([0.]), tensor([0.]), tensor([0.])]
                if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
                    self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)

                y = x[i].sigmoid()

                if self.inplace:
                    # 中心点xy 网格grid
                    y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]
                    # 长宽wh  锚anchor_grid
                    y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]
                else:
                    xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]
                    wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]
                    y = torch.cat((xy, wh, y[..., 4:]), -1)
                z.append(y.view(bs, -1, self.no))

        return x if self.training else (torch.cat(z, 1),) if self.export else (torch.cat(z, 1), x)
    
    # # 转成caffe时候的代码
    # def forward(self, x):
    #     # inference output
    #     z = []
    #     # 对于每个尺度的特征图来说
    #     for i in range(self.nl):
    #         # conv
    #         # P3: [1, 128, 80, 80]->[1, 3*(nc+5), 80, 80]
    #         # P4: [1, 256, 40, 40]->[1, 3*(nc+5), 40, 40]
    #         # P5: [1, 512, 20, 20]->[1, 3*(nc+5), 20, 20]
    #         x[i] = self.m[i](x[i])
    #         # y = x[i]
    #         y = x[i].sigmoid()
    #         z.append(y)
    #     return z

    def _make_grid(self, nx=20, ny=20, i=0, torch_1_10=check_version(torch.__version__, '1.10.0')):
        d = self.anchors[i].device
        t = self.anchors[i].dtype
        y, x = torch.arange(ny, device=d, dtype=t), torch.arange(nx, device=d, dtype=t)
        # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
        if torch_1_10:
            yv, xv = torch.meshgrid(y, x, indexing='ij')
        else:
            yv, xv = torch.meshgrid(y, x)
        # 网格grid (x, y)
        # x[i] --> (bs,3,ny,nx,85)
        # grid --> (1,3,ny,nx,2)
        grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2))
        # 锚anchor (w, h)
        # x[i] --> (bs,3,ny,nx,85)
        # anchor_grid --> (1,3,ny,nx,2)
        # self.stride: tensor([ 8., 16., 32.])
        anchor_grid = (self.anchors[i].clone() * self.stride[i]).view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2))
        return grid, anchor_grid

检测头2--->解耦头

python 复制代码
class DecoupledHead(nn.Module):
    def __init__(self, ch=256, nc=80, anchors=()):
        super().__init__()
        # 类别个数
        self.nc = nc
        # 检测层的数量
        self.nl = len(anchors)
        # 每一层anchor个数
        self.na = len(anchors[0]) // 2
        self.merge = Conv(ch, 128 , 1, 1)  # 默认256
        self.cls_convs1 = Conv(128, 64, 3, 1, 1)
        self.cls_convs2 = Conv(64, 64, 3, 1, 1)
        self.reg_convs1 = Conv(128, 64, 3, 1, 1)
        self.reg_convs2 = Conv(64, 64, 3, 1, 1)
        self.cls_preds = nn.Conv2d(64 , self.nc*self.na, 1)
        self.reg_preds = nn.Conv2d(64 , 4*self.na, 1)
        self.obj_preds = nn.Conv2d(64 , 1*self.na, 1)

    def forward(self, x):
        x = self.merge(x)
        x1 = self.cls_convs1(x)
        x1 = self.cls_convs2(x1)
        x1 = self.cls_preds(x1)
        x2 = self.reg_convs1(x)
        x2 = self.reg_convs2(x2)
        x21 = self.reg_preds(x2)
        x22 = self.obj_preds(x2)
        out = torch.cat([x21, x22, x1], 1)
        return out

检测头3--->ASFF检测头

python 复制代码
class ASFF_Detect(nn.Module):  
    stride = None  
    onnx_dynamic = False   
    def __init__(self, nc=80, anchors=(), ch=(), multiplier=0.5, rfb=False, inplace=True):  
        super().__init__()
        # 类别数目
        self.nc = nc  
        # 每个anchor输出维度
        self.no = nc + 5  
        # 检测层的输出数量(不同尺度个数) 
        self.nl = len(anchors) 
        # 每个尺度特征图的anchor数量
        self.na = len(anchors[0]) // 2  
        # 初始化步长init grid
        self.grid = [torch.zeros(1)] * self.nl  
        # init anchor grid
        self.anchor_grid = [torch.zeros(1)] * self.nl
        # self.register_buffer("a", torch.ones(2,3))  
        # register_buffer的作用是将torch.ones(2,3)这个tensor注册到模型的buffers()属性中,并命名为a,
        # 这代表a对应的是一个持久态,不会有梯度传播给它,但是能被模型的state_dict记录下来,可以理解为模型的常数。
        self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # (3,3,2) == (nl,na,2)
        # ASFF模块
        self.l0_fusion = ASFFV5(level=0, multiplier=multiplier, rfb=rfb)
        self.l1_fusion = ASFFV5(level=1, multiplier=multiplier, rfb=rfb)
        self.l2_fusion = ASFFV5(level=2, multiplier=multiplier, rfb=rfb)
        # 检测头head输出卷积
        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  
        # use in-place ops (e.g. slice assignment)
        self.inplace = inplace  

    def forward(self, x):
        # inference output
        z = []  
        result = []
        result.append(self.l2_fusion(x))
        result.append(self.l1_fusion(x))
        result.append(self.l0_fusion(x))
        x = result    
        
        # 对于每个尺度的特征图来说
        for i in range(self.nl):
            # conv 
            # P3: [1, 128, 80, 80]->[1, 3*(nc+5), 80, 80]
            # P4: [1, 256, 40, 40]->[1, 3*(nc+5), 40, 40]
            # P5: [1, 512, 20, 20]->[1, 3*(nc+5), 20, 20]
            x[i] = self.m[i](x[i])  
            # 以coco数据集为例,x(bs,255,20,20) -> x(bs,3,20,20,85)   (x,y,w,h,c,c1,c2,.........)
            bs, _, ny, nx = x[i].shape  
            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
            
            # 推断过程inference 
            if not self.training:  
                # self.grid: [tensor([0.]), tensor([0.]), tensor([0.])]
                if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
                    self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)

                y = x[i].sigmoid()
              
                # 这块xy的计算存在大量疑惑?????????????????????????
                if self.inplace:
                    # 中心点xy 网格grid
                    y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  
                    # 长宽wh  锚anchor_grid
                    y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] 
                else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
                    xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  
                    wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  
                    y = torch.cat((xy, wh, y[..., 4:]), -1)
                z.append(y.view(bs, -1, self.no))
        
        return x if self.training else (torch.cat(z, 1), x)
    
    def _make_grid(self, nx=20, ny=20, i=0):
        d = self.anchors[i].device
        if check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
            yv, xv = torch.meshgrid([torch.arange(ny, device=d), torch.arange(nx, device=d)], indexing='ij')
        else:
            yv, xv = torch.meshgrid([torch.arange(ny, device=d), torch.arange(nx, device=d)])
        # 网格grid (x, y)
        # x[i] --> (bs,3,ny,nx,85)
        # grid --> (1,3,ny,nx,2)
        grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()
        # 锚anchor (w, h)
        # x[i] --> (bs,3,ny,nx,85)
        # anchor_grid --> (1,3,ny,nx,2)
        # self.stride: tensor([ 8., 16., 32.])
        anchor_grid = (self.anchors[i].clone() * self.stride[i]).view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()
        return grid, anchor_grid

Model类解析

python 复制代码
class Model(nn.Module):
    def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None):  
        super().__init__()
        # 字典dict类型
        if isinstance(cfg, dict):
            self.yaml = cfg  
        # yaml文件
        else: 
            self.yaml_file = Path(cfg).name
            # 用ascii编码,忽略错误的形式打开文件cfg
            with open(cfg, encoding='ascii', errors='ignore') as f:
                self.yaml = yaml.safe_load(f)  
        
        # 输入通道
        ch = self.yaml['ch'] = self.yaml.get('ch', ch)  
        # 重写yaml文件中的nc
        if nc and nc != self.yaml['nc']:
            LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
            self.yaml['nc'] = nc  
        # 重写yaml文件中的anchors 
        if anchors:
            LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')
            self.yaml['anchors'] = round(anchors)  
        
        # 根据yaml文件的model_dict解析模型
        self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) 
        # 默认类别名字 从0到nc-1
        self.names = [str(i) for i in range(self.yaml['nc'])] 
        self.inplace = self.yaml.get('inplace', True)
       
        # 设置Detect()中的inplace, stride, anchors
        m = self.model[-1]  
        if isinstance(m, Detect) or isinstance(m, ASFF_Detect):
            s = 256
            m.inplace = self.inplace
            # 根据前向传播forward 计算步长stride
            m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))])
            # 把anchors放缩到了3个不同的尺度
            # 这块的形状为什么这样变化??????
            m.anchors /= m.stride.view(-1, 1, 1)
            # 根据YOLOv5 Detect()模块m的步幅顺序检查给定锚框顺序,必要时进行纠正。
            check_anchor_order(m)
            self.stride = m.stride
            if m.decoupled:
                LOGGER.info('decoupled done')
                pass 
            else:
                self._initialize_biases()  # only run once  

        # 初始化权重weights和偏置biases
        initialize_weights(self)
        self.info()
        LOGGER.info('')

    def forward(self, x, augment=False, profile=False, visualize=False):
        # 推断时增强augmented inference
        if augment:
            return self._forward_augment(x)  
        # 单尺度推断single-scale inference 或者训练train
        return self._forward_once(x, profile, visualize)  

    def _forward_augment(self, x):
        # height, width
        img_size = x.shape[-2:]  
        s = [1, 0.83, 0.67]  # scales
        f = [None, 3, None]  # flips (2-ud, 3-lr)
        y = []  # outputs
        for si, fi in zip(s, f):
            xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
            yi = self._forward_once(xi)[0]  # forward
            # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1])  # save
            yi = self._descale_pred(yi, fi, si, img_size)
            y.append(yi)
        y = self._clip_augmented(y)  # clip augmented tails
        return torch.cat(y, 1), None  # augmented inference, train

    def _forward_once(self, x, profile=False, visualize=False):
        y, dt = [], []  
        for m in self.model:
            # 输入不是来自于上一个层的输出
            if m.f != -1:  
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]
            if profile:
                self._profile_one_layer(m, x, dt)
            # 计算输出
            x = m(x)
            y.append(x if m.i in self.save else None) 
            # 特征可视化
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize)
        return x

    def _descale_pred(self, p, flips, scale, img_size):
        # de-scale predictions following augmented inference (inverse operation)
        if self.inplace:
            p[..., :4] /= scale  # de-scale
            if flips == 2:
                p[..., 1] = img_size[0] - p[..., 1]  # de-flip ud
            elif flips == 3:
                p[..., 0] = img_size[1] - p[..., 0]  # de-flip lr
        else:
            x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale  # de-scale
            if flips == 2:
                y = img_size[0] - y  # de-flip ud
            elif flips == 3:
                x = img_size[1] - x  # de-flip lr
            p = torch.cat((x, y, wh, p[..., 4:]), -1)
        return p

    def _clip_augmented(self, y):
        # Clip YOLOv5 augmented inference tails
        nl = self.model[-1].nl  # number of detection layers (P3-P5)
        g = sum(4 ** x for x in range(nl))  # grid points
        e = 1  # exclude layer count
        i = (y[0].shape[1] // g) * sum(4 ** x for x in range(e))  # indices
        y[0] = y[0][:, :-i]  # large
        i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e))  # indices
        y[-1] = y[-1][:, i:]  # small
        return y

    def _profile_one_layer(self, m, x, dt):
        c = isinstance(m, Detect) or isinstance(m, ASFF_Detect) # is final layer, copy input as inplace fix
        o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0  # FLOPs
        t = time_sync()
        for _ in range(10):
            m(x.copy() if c else x)
        dt.append((time_sync() - t) * 100)
        if m == self.model[0]:
            LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s}  {'module'}")
        LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f}  {m.type}')
        if c:
            LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s}  Total")

    def _initialize_biases(self, cf=None):  # initialize biases into Detect(), cf is class frequency
        # https://arxiv.org/abs/1708.02002 section 3.3
        # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
        m = self.model[-1]  
        # mi--> Conv2d(128, 255, kernel_size=(1, 1), stride=(1, 1)) 
        # s --> tensor(8.)
        for mi, s in zip(m.m, m.stride):  
            # conv.bias(255) to (3,85)
            b = mi.bias.view(m.na, -1)  
            b.data[:, 4] += math.log(8 / (640 / s) ** 2)  # obj (8 objects per 640 image)
            b.data[:, 5:] += math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum())  # cls
            mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)

    def _print_biases(self):
        m = self.model[-1]  
        for mi in m.m:  
            b = mi.bias.detach().view(m.na, -1).T  
            LOGGER.info(('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))

    def _print_weights(self):
        for m in self.model.modules():
            if type(m) is Bottleneck:
                LOGGER.info('%10.3g' % (m.w.detach().sigmoid() * 2))  # shortcut weights

    def fuse(self):  # fuse model Conv2d() + BatchNorm2d() layers
        LOGGER.info('Fusing layers... ')
        for m in self.model.modules():
            if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):
                m.conv = fuse_conv_and_bn(m.conv, m.bn)  # update conv
                delattr(m, 'bn')  # remove batchnorm
                m.forward = m.forward_fuse  # update forward
        self.info()
        return self

    def info(self, verbose=False, img_size=640):  
        # 打印模型信息
        model_info(self, verbose, img_size)

    def _apply(self, fn):
        # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
        self = super()._apply(fn)
        m = self.model[-1]  # Detect()
        if isinstance(m, Detect) or isinstance(m, ASFF_Detect) or isinstance(m, Decoupled_Detect):
            m.stride = fn(m.stride)
            m.grid = list(map(fn, m.grid))
            if isinstance(m.anchor_grid, list):
                m.anchor_grid = list(map(fn, m.anchor_grid))
        return self

parse_model函数

python 复制代码
def parse_model(d, ch):  
    # model_dict, input_channels(3)
    LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")
    # nc:类别数; gd:'depth_multiple'; gw:'width_multiple'
    anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
    # anchor数目, 每层为3
    na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors 
    # 每层的输出,na*(classes+5)
    no = na * (nc + 5)  
                                        
    # layers, savelist, ch_out
    layers, save, c2 = [], [], ch[-1] 
    # from, number, module, args
    # 以[-1, 1, Conv, [64, 6, 2, 2]为例, ch=[3], f=-1, n=1, m=Conv, args=[64, 6, 2, 2]
    #   [-1, 1, Conv, [128, 3, 2]
    #   [-1, 3, C3, [128]]
    #   [-1, 1, SPPF, [1024, 5]]
    #   [-1, 1, nn.Upsample, [None, 2, 'nearest']]
    #   [[-1, 6], 1, Concat, [1]]
    #   [-1, 3, C3, [512, False]]
    for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):
        # 把strings转为本身的类型
        m = eval(m) if isinstance(m, str) else m  
        for j, a in enumerate(args):
            try:
                # 列表形式
                args[j] = eval(a) if isinstance(a, str) else a  
            except NameError:
                pass
        
        # depth_gain 深度缩放因子
        n = n_ = max(round(n*gd), 1) if n > 1 else n 
    
        # 对于不同类型的卷积模块   
        if m in [Conv, DWConv,  CrossConv, GhostConv, Bottleneck, GhostBottleneck,
                 BottleneckCSP, MobileBottleneck, SPP, SPPF, MixConv2d, Focus,
                 InvertedResidual, ConvBNReLU, C3, C3TR, C3SPP, C3Ghost, CoordAtt,
                 CoordAttv2, OSA_Stage]:
            # i=0, c1=3,  c2=64;  
            # i=1, c1=32, c2=128;  
            # i=2, c1=64, c2=128;
            # c1输入通道;c2输出通道;
            c1, c2 = ch[f], args[0]
            
            # width_gain 宽度缩放因子
            # 说明不是输出
            if c2 != no:  
                # 输出通道数必须为8的倍数
                c2 = make_divisible(c2*gw, 8)
            
            # i=0, [3,  32, 6, 2, 2]
            # i=1, [32, 64, 3, 2]
            # i=2, [64, 64]
            args = [c1, c2, *args[1:]]

            # 堆叠次数number of repeats
            # 注意网络设计理念:stage ---> block ---> layer
            if m in [BottleneckCSP, C3, C3TR, C3Ghost]:
                args.insert(2, n)  
                n = 1
        elif m is nn.BatchNorm2d:
            args = [ch[f]]
        elif m is Concat:
            c2 = sum(ch[x] for x in f)
        elif m is Detect:
            args.append([ch[x] for x in f])
            if isinstance(args[1], int):  # number of anchors
                args[1] = [list(range(args[1] * 2))] * len(f)
        elif m is ASFF_Detect :
            args.append([ch[x] for x in f])
            if isinstance(args[1], int):  # number of anchors
                args[1] = [list(range(args[1] * 2))] * len(f) 
        elif m is Contract:
            c2 = ch[f] * args[0] ** 2
        elif m is Expand:
            c2 = ch[f] // args[0] ** 2
        elif m is ConvNeXt_Block:
            c2 = args[0]
            args = args[1:]
        else:
            c2 = ch[f]
        
        # module
        # Conv(3, 32, 6, 2, 2]
        m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) 
        
        # m ===> <class 'models.common.Conv'>
        # str(m)[8:-2] ===> models.common.Conv
        t = str(m)[8:-2].replace('__main__.', '')  
        # 参数(parameters)/模型参数, 由模型通过学习得到的变量,比如权重和偏置.
        # m_.parameters(): <generator object Module.parameters at 0x7fcf4c2059d0>
        np = sum(x.numel() for x in m_.parameters()) 

        # attach index, 'from' index, type, number params
        m_.i, m_.f, m_.type, m_.np = i, f, t, np  
       
        LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f}  {t:<40}{str(args):<30}')  
        
        # savelist  [6, 4, 14, 10, 17, 20, 23]
        save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  
        # layers列表
        layers.append(m_)
        if i == 0:
            ch = []
        # ch列表
        ch.append(c2)

    return nn.Sequential(*layers), sorted(save)
相关推荐
盼小辉丶2 小时前
TensorFlow深度学习实战——情感分析模型
深度学习·神经网络·tensorflow
好评笔记2 小时前
AIGC视频生成模型:Stability AI的SVD(Stable Video Diffusion)模型
论文阅读·人工智能·深度学习·机器学习·计算机视觉·面试·aigc
算家云2 小时前
TangoFlux 本地部署实用教程:开启无限音频创意脑洞
人工智能·aigc·模型搭建·算家云、·应用社区·tangoflux
AI街潜水的八角3 小时前
工业缺陷检测实战——基于深度学习YOLOv10神经网络PCB缺陷检测系统
pytorch·深度学习·yolo
叫我:松哥4 小时前
基于Python django的音乐用户偏好分析及可视化系统设计与实现
人工智能·后端·python·mysql·数据分析·django
熊文豪5 小时前
深入解析人工智能中的协同过滤算法及其在推荐系统中的应用与优化
人工智能·算法
Vol火山5 小时前
AI引领工业制造智能化革命:机器视觉与时序数据预测的双重驱动
人工智能·制造
tuan_zhang6 小时前
第17章 安全培训筑牢梦想根基
人工智能·安全·工业软件·太空探索·战略欺骗·算法攻坚
Antonio9156 小时前
【opencv】第10章 角点检测
人工智能·opencv·计算机视觉
互联网资讯6 小时前
详解共享WiFi小程序怎么弄!
大数据·运维·网络·人工智能·小程序·生活