【人脸朝向识别与分类预测】基于PNN神经网络

**课题名称:**基于PNN神经网络的人脸朝向识别分类

**版本日期:**2024-02-20

**运行方式:**直接运行PNN0503.m文件

代码获取方式: 私信博主或 QQ:491052175

模型描述:

采集到一组人脸朝向不同角度时的图像,图像来自不同的10个人,每个人5幅图像,人脸的朝向分别是左方,左前方,前方,右前方,右方。通过观察不难法线,当人脸面朝不同方向时,眼睛在图像中的位置差别比较大.因此可以考虑将图片中描述眼睛位置的特征喜喜提取出来作为LVQ神经网络的输入,5个朝向分别用1,2,3,4,5表示,作为LVQ神经网络的输出。通过对训练集的图像进行训练,得到具有预测功能的网络,便可以对任意给出的人脸图像进行朝向判断和识别分类

算法流程:

1.人脸特征向量提取:如设计思路中所述,当人脸朝向不同时,眼睛在图像中的位置会有明显的差别。因此,只需要将描述人眼位置信息的特征向量提取出来即可。方法是将整幅图像划分成6行8列, 人眼的位置信息可以用第2行的8个子矩阵来描述(注意:针对不同大小的图像,划分的网格需稍作修改)边缘检测后8个子短阵中的值为"1"的像萦点个数与人脸朝向有直接关系, 只要分别统计出第2行的8个子短阵中的值为"1"的像素点个数即可。

2.训练集和测试集的产生:为了保证训练集数据的随机性,随机选取图像库中的30隔入脸图像提取出的特征向量作为训练集数据,剩余的20幅人脸图像提取出来的特征向盘作为测试集数据。

3.PNN神经网络创建:利用newpnn函数和spread值用于创建PNN神经网络

4.PNN网络训练:PNN神经网络不需要特别训练,影响网络的预测精度主要由spread值决定。

5.人脸识别测试:网络训练收敛后,便可以对测试集数据进行预测,即对测试集的图像进行人脸朝向识别.对于任意给出的图像,只需要将其特征向量提取出来,便可对其进行识别。

PNN神经网络调用格式:

net=newpnn(P,T,SPREAD)

P:为输入数据的矩阵

T:为输出数据的矩阵

SPREAD:径向基函数的拓展速度,默认值为1

**改进方向:**无

待改进方向:

因为训练数据比较少,为了提高预测精度,通过交叉验证并不断迭代寻找最佳的SPREAD值,最后应用于PNN神经网络里。相比于固定的SPREAD值而言,自适应求解SPREAD值的方式可以更好地提高预测精度

特殊说明:

1.根据测试,当spread值在3.5~4范围的时候,PNN神经网络在当前模型下的预测

2.经过测试,对训练和测试数据进行归一化,反而降低了预测精度

3.神经网络每一次的预测结果都不相同,为了得到更好的结果,建议多次运行取最佳值

Matlab仿真结果

基于PNN神经网络的人脸朝向识别精确率:

基于PNN神经网络的人脸朝向识别分类结果:

基于PNN神经网络的人脸朝向识别分类预测误差:

相关推荐
机器学习之心5 小时前
PINN驱动的高阶偏微分方程求解MATLAB代码
matlab·物理信息神经网络·高阶偏微分方程
民乐团扒谱机5 小时前
逻辑回归算法干货详解:从原理到 MATLAB 可视化实现
数学建模·matlab·分类·数据挖掘·回归·逻辑回归·代码分享
echoarts16 小时前
MATLAB R2025a安装配置及使用教程(超详细保姆级教程)
开发语言·其他·matlab
bu_shuo18 小时前
安装MATLAB205软件记录
matlab·matlab安装
MATLAB代码顾问19 小时前
MATLAB可以实现的各种智能算法
开发语言·matlab
软件算法开发2 天前
基于LSTM深度学习的网络流量测量算法matlab仿真
深度学习·matlab·lstm·网络流量测量
wheeldown2 天前
【数学建模】数据预处理入门:从理论到动手操作
python·数学建模·matlab·python3.11
小白的高手之路3 天前
Matlab中的积分——函数int()和quadl()
matlab
机器学习之心3 天前
PINN物理信息神经网络用于求解二阶常微分方程(ODE)的边值问题,Matlab实现
人工智能·神经网络·matlab·物理信息神经网络·二阶常微分方程
WangYan20223 天前
MATLAB 2023a深度学习工具箱全面解析:从CNN、RNN、GAN到YOLO与U-Net,涵盖模型解释、迁移学习、时间序列预测与图像生成的完整实战指南
深度学习·matlab·matlab 2023a