KafKa3.x基础

来源:B站

目录

定义

Kafka传统定义 :Kafka是一个分布式的基于发布/订阅模式的消息队列(MessageQueue) ,主要应用于大数据实时处理领域。
发布/订阅 :消息的发布者不会将消息直接发送给特定的订阅者,而是将发布的消息分为不同的类别,订阅者只接收感兴趣的消息。
Kafka最 新定义 : Kafka是 一个开源的分布式事件流平台 (Event Streaming Platform),被数千家公司用于高性能数据管道、流分析、数据集成和关键任务应用。

消息队列

目 前企 业中比 较常 见的 消息 队列产 品主 要有 Kafka、ActiveMQ 、RabbitMQ 、RocketMQ 等。
在大数据场景主要采用 Kafka 作为消息队列。在 JavaEE 开发中主要采用 ActiveMQ、RabbitMQ、RocketMQ。

传统消息队列的应用场景

传统的消息队列的主要应用场景包括:缓存/消峰、解耦和异步通信

  • 缓冲/消峰 :有助于控制和优化数据流经过系统的速度,解决生产消息和消费消息的处理速度不一致的情况
  • 解耦:允许你独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束。
  • 异步通信:允许用户把一个消息放入队列,但并不立即处理它,然后在需要的时候再去处理它们。

消息队列的两种模式

  • 1)点对点模式
    • 消费者主动拉取数据,消息收到后清除消息
  • 2)发布/订阅模式
    • 可以有多个topic主题(浏览、点赞、收藏、评论等)
    • 消费者消费数据之后,不删除数据
    • 每个消费者相互独立,都可以消费到数据

Kafka 基础架构

(1)Producer :消息生产者,就是向 Kafka broker 发消息的客户端。

(2)Consumer :消息消费者,向 Kafka broker 取消息的客户端。

(3)Consumer Group(CG) :消费者组,由多个 consumer 组成。消费者组内每个消费者负责消费不同分区的数据,一个分区只能由一个组内消费者消费;消费者组之间互不影响。所有的消费者都属于某个消费者组,即消费者组是逻辑上的一个订阅者。

(4)Broker一台 Kafka 服务器就是一个 broker 。一个集群由多个 broker 组成。一个broker 可以容纳多个 topic。

(5)Topic :可以理解为一个队列,生产者和消费者面向的都是一个 topic。

(6)Partition :为了实现扩展性,一个非常大的 topic 可以分布到多个 broker(即服务器)上,一个 topic 可以分为多个 partition ,每个 partition 是一个有序的队列。

(7)Replica :副本。一个 topic 的每个分区都有若干个副本,一个 Leader 和若干个Follower

(8)Leader :每个分区多个副本的"主",生产者发送数据的对象,以及消费者消费数据的对象都是 Leader。

(9)Follower:每个分区多个副本中的"从",实时从 Leader 中同步数据,保持和Leader 数据的同步。Leader 发生故障时,某个 Follower 会成为新的 Leader。

Kafka 命令行操作

主题命令行操作

1)查看操作主题命令参数

sh 复制代码
[jjm@hadoop102 kafka]$ bin/kafka-topics.sh
参数 描述
--bootstrap-server <String: server toconnect to> 连接的 Kafka Broker 主机名称和端口号。
--topic <String: topic> 操作的 topic 名称。
--create 创建主题。
--delete 删除主题。
--alter 修改主题。
--list 查看所有主题。
--describe 查看主题详细描述。
--partitions <Integer: # of partitions> 设置分区数。
--replication-factor<Integer: replication factor> 设置分区副本。
--config <String: name=value> 更新系统默认的配置。

2)查看当前服务器中的所有 topic

sh 复制代码
[jjm@hadoop102 kafka]$ bin/kafka-topics.sh --bootstrap-server 
hadoop102:9092 --list

3)创建 first topic

sh 复制代码
[jjm@hadoop102 kafka]$ bin/kafka-topics.sh --bootstrap-server 
hadoop102:9092 --create --partitions 1 --replication-factor 3 --topic first

选项说明:

--topic 定义 topic 名

--replication-factor 定义副本数

--partitions 定义分区数

4)查看 first 主题的详情

sh 复制代码
[jjm@hadoop102 kafka]$ bin/kafka-topics.sh --bootstrap-server 
hadoop102:9092 --describe --topic first

5)修改分区数(注意:分区数只能增加,不能减少

sh 复制代码
[jjm@hadoop102 kafka]$ bin/kafka-topics.sh --bootstrap-server 
hadoop102:9092 --alter --topic first --partitions 3

6)再次查看 first 主题的详情

sh 复制代码
[jjm@hadoop102 kafka]$ bin/kafka-topics.sh --bootstrap-server 
hadoop102:9092 --describe --topic first

7)删除 topic

sh 复制代码
[jjm@hadoop102 kafka]$ bin/kafka-topics.sh --bootstrap-server 
hadoop102:9092 --delete --topic first

生产者命令行操作

1)查看操作生产者命令参数

sh 复制代码
[jjm@hadoop102 kafka]$ bin/kafka-console-producer.sh
参数 描述
--bootstrap-server <String: server toconnect to> 连接的 Kafka Broker 主机名称和端口号。
--topic <String: topic> 操作的 topic 名称

2)发送消息

sh 复制代码
[jjm@hadoop102 kafka]$ bin/kafka-console-producer.sh --bootstrap-server hadoop102:9092 --topic first
>hello world
>hello kafka

消费者命令行操作

1)查看操作消费者命令参数

sh 复制代码
[jjm@hadoop102 kafka]$ bin/kafka-console-consumer.sh
参数 描述
--bootstrap-server <String: server toconnect to> 连接的 Kafka Broker 主机名称和端口号。
--topic <String: topic> 操作的 topic 名称。
--from-beginning 从头开始消费。
--group <String: consumer group id> 指定消费者组名称。

2)消费消息

(1)消费 first 主题中的数据。

sh 复制代码
[jjm@hadoop102 kafka]$ bin/kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --topic first

(2)把主题中所有的数据都读取出来(包括历史数据)。

sh 复制代码
[jjm@hadoop102 kafka]$ bin/kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --from-beginning --topic first

Kafka 生产者

生产者消息发送流程

发送原理

在消息发送的过程中,涉及到了两个线程------main 线程和 Sender 线程 。在 main 线程中创建了一个双端队列 RecordAccumulator 。main 线程将消息发送给 RecordAccumulator,Sender 线程不断从 RecordAccumulator 中拉取消息发送到 Kafka Broker

生产者重要参数列表

参数名称 描述
bootstrap.servers 生产者连接集群所需的 broker 地 址 清 单 。 例 如hadoop102:9092,hadoop103:9092,hadoop104:9092,可以设置 1 个或者多个,中间用逗号隔开。注意这里并非需要所有的 broker 地址,因为生产者从给定的 broker里查找到其他 broker 信息。
key.serializer 和 value.serializer 指定发送消息的 key 和 value 的序列化类型。一定要写全类名。
buffer.memory RecordAccumulator 缓冲区总大小,默认 32m
batch.size 缓冲区一批数据最大值,默认 16k。适当增加该值,可以提高吞吐量,但是如果该值设置太大,会导致数据传输延迟增加。
linger.ms 如果数据迟迟未达到 batch.size,sender 等待 linger.time之后就会发送数据。单位 ms,默认值是 0ms,表示没有延迟生产环境建议该值大小为 5-100ms 之间。
acks 0:生产者发送过来的数据,不需要等数据落盘应答。1:生产者发送过来的数据,Leader 收到数据后应答。-1(all):生产者发送过来的数据,Leader+和 isr 队列里面的所有节点收齐数据后应答。默认值是-1,-1 和all 是等价的。
max.in.flight.requests.per.connection 允许最多没有返回 ack 的次数,默认为 5开启幂等性要保证该值是 1-5 的数字
retries 当消息发送出现错误的时候,系统会重发消息。retries表示重试次数。默认是 int 最大值,2147483647 。如果设置了重试,还想保证消息的有序性,需要设置MAX_IN_FLIGHT_REQUESTS_PER_CONNECTION=1否则在重试此失败消息的时候,其他的消息可能发送成功了。
retry.backoff.ms 两次重试之间的时间间隔,默认是 100ms
enable.idempotence 是否开启幂等性,默认 true,开启幂等性。
compression.type 生产者发送的所有数据的压缩方式。默认是 none ,也就是不压缩。支持压缩类型:none、gzip、snappy、lz4 和 zstd

异步发送 API

普通异步发送

1)需求:创建 Kafka 生产者,采用异步的方式发送到 Kafka Broker

2)代码编写

(1)创建工程 kafka

(2)导入依赖

xml 复制代码
<dependencies>
 <dependency>
 <groupId>org.apache.kafka</groupId>
 <artifactId>kafka-clients</artifactId>
 <version>3.0.0</version>
 </dependency>
</dependencies>

(3)创建包名:com.jjm.kafka.producer

(4)编写不带回调函数的 API 代码

java 复制代码
package com.jjm.kafka.producer;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import java.util.Properties;
public class CustomProducer {
	 public static void main(String[] args) throws InterruptedException {
		 // 1. 创建 kafka 生产者的配置对象
		 Properties properties = new Properties();
		 // 2. 给 kafka 配置对象添加配置信息:bootstrap.servers
		 properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "hadoop102:9092");
		 
		 // key,value 序列化(必须):key.serializer,value.serializer 
		 properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, 
	"org.apache.kafka.common.serialization.StringSerializer");
		 //或者可以使用下面这个,同理下面的value也是
		 //properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName();
		 properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, 
		"org.apache.kafka.common.serialization.StringSerializer");
		 // 3. 创建 kafka 生产者对象
		 KafkaProducer<String, String> kafkaProducer = new KafkaProducer<String, String>(properties);
		 // 4. 调用 send 方法,发送消息
		 for (int i = 0; i < 5; i++) {
			 kafkaProducer.send(new ProducerRecord<>("first","jjm" + i));
		 }
		 // 5. 关闭资源
		 kafkaProducer.close();
	 }
}

测试:

①在 hadoop102 上开启 Kafka 消费者。

sh 复制代码
[jjm@hadoop103 kafka]$ bin/kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --topic first

②在 IDEA 中执行代码,观察 hadoop102 控制台中是否接收到消息。

sh 复制代码
[jjm@hadoop102 kafka]$ bin/kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --topic first
jjm 0
jjm 1
jjm 2
jjm 3
jjm 4

带回调函数的异步发送

回调函数会在 producer 收到 ack 时调用 ,为异步调用,该方法有两个参数,分别是元数据信息(RecordMetadata)和异常信息(Exception) ,如果 Exception 为 null,说明消息发送成功,如果 Exception 不为 null,说明消息发送失败。
注意:消息发送失败会自动重试,不需要我们在回调函数中手动重试。

java 复制代码
package com.jjm.kafka.producer;
import org.apache.kafka.clients.producer.*;
import java.util.Properties;
public class CustomProducerCallback {
	 public static void main(String[] args) throws InterruptedException {
		// 1. 创建 kafka 生产者的配置对象
		Properties properties = new Properties();
		// 2. 给 kafka 配置对象添加配置信息
		properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "hadoop102:9092");
		 // key,value 序列化(必须):key.serializer,value.serializer
		properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
		 
		properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
		// 3. 创建 kafka 生产者对象
		KafkaProducer<String, String> kafkaProducer = new KafkaProducer<String, String>(properties);
		 // 4. 调用 send 方法,发送消息
		for (int i = 0; i < 5; i++) {
			// 添加回调
			kafkaProducer.send(new ProducerRecord<>("first", "jjm" + i), new Callback() {
				// 该方法在 Producer 收到 ack 时调用,为异步调用
				@Override
				public void onCompletion(RecordMetadata metadata, Exception exception) {
					if (exception == null) {
						// 没有异常,输出信息到控制台
						System.out.println(" 主题: " + 
						metadata.topic() + "->" + "分区:" + metadata.partition());
					 } else {
						 // 出现异常打印
						 exception.printStackTrace();
					 }
				 }
			 });
			 // 延迟一会会看到数据发往不同分区
			 Thread.sleep(2);
		 }
		 // 5. 关闭资源
		 kafkaProducer.close();
	 }
}

测试:

①在 hadoop102 上开启 Kafka 消费者。

sh 复制代码
[jjm@hadoop103 kafka]$ bin/kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --topic first

②在 IDEA 中执行代码,观察 hadoop102 控制台中是否接收到消息。

sh 复制代码
[jjm@hadoop102 kafka]$ bin/kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --topic first
atguigu 0
atguigu 1
atguigu 2
atguigu 3
atguigu 4

③在 IDEA 控制台观察回调信息。

shell 复制代码
主题:first->分区:0
主题:first->分区:0
主题:first->分区:1
主题:first->分区:1
主题:first->分区:1

同步发送 API

只需在异步发送的基础上,再调用一下 get()方法即可。

java 复制代码
package com.jjm.kafka.producer;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import java.util.Properties;
import java.util.concurrent.ExecutionException;
public class CustomProducerSync {
	public static void main(String[] args) throws InterruptedException, ExecutionException {
	 // 1. 创建 kafka 生产者的配置对象
	Properties properties = new Properties();
	 // 2. 给 kafka 配置对象添加配置信息
	properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop102
	:9092");
	 // key,value 序列化(必须):key.serializer,value.serializer
	properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
	 
	properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
	 // 3. 创建 kafka 生产者对象
	KafkaProducer<String, String> kafkaProducer = new KafkaProducer<String, String>(properties);
	// 4. 调用 send 方法,发送消息
	for (int i = 0; i < 10; i++) {
		 // 异步发送 默认
		// kafkaProducer.send(new 
		ProducerRecord<>("first","kafka" + i));
		 // 同步发送
		kafkaProducer.send(new ProducerRecord<>("first","kafka" + i)).get();
	 }
	 // 5. 关闭资源
	kafkaProducer.close();
	 }
}

测试:

①在 hadoop102 上开启 Kafka 消费者。

sh 复制代码
[jjm@hadoop103 kafka]$ bin/kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --topic first

②在 IDEA 中执行代码,观察 hadoop102 控制台中是否接收到消息。

sh 复制代码
[jjm@hadoop102 kafka]$ bin/kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --topic first
atguigu 0
atguigu 1
atguigu 2
atguigu 3
atguigu 4

生产者分区

分区好处

(1)便于合理使用存储资源,每个Partition在一个Broker上存储,可以把海量的数据按照分区切割成一块一块数据存储在多台Broker上。合理控制分区的任务,可以实现负载均衡的效果。

(2)提高并行度,生产者可以以分区为单位发送数据;消费者可以以分区为单位进行消费数据。

生产者发送消息的分区策略

  • 1)默认的分区器 DefaultPartitioner
    在 IDEA 中 ctrl +n,全局查找 DefaultPartitioner。
    (1)指明partition的情况下,直接将指明的值作为partition值 ;例如partition=0,所有数据写入分区0。
    (2)没有指明partition值但有key的情况下,将key的hash值与topic的partition数进行取余得到partition值
    例如:key1的hash值=5, key2的hash值=6 ,topic的partition数=2,那么key1 对应的value1写入1号分区,key2对应的value2写入0号分区。
    (3)既没有partition值又没有key值的情况下,Kafka采用Sticky Partitio(黏性分区器) ,会随机选择一个分区,并尽可能一直使用该分区,待该分区的batch已满或者已完成,Kafka再随机一个分区进行使用(和上一次的分区不同)。
    例如:第一次随机选择0号分区,等0号分区当前批次满了(默认16k)或者linger.ms设置的时间到, Kafka再随机一个分区进行使用(如果还是0会继续随机)。
相关推荐
Acrelhuang17 分钟前
安科瑞5G基站直流叠光监控系统-安科瑞黄安南
大数据·数据库·数据仓库·物联网
皓74126 分钟前
服饰电商行业知识管理的创新实践与知识中台的重要性
大数据·人工智能·科技·数据分析·零售
Mephisto.java28 分钟前
【大数据学习 | kafka高级部分】kafka的kraft集群
大数据·sql·oracle·kafka·json·hbase
Mephisto.java30 分钟前
【大数据学习 | kafka高级部分】kafka的文件存储原理
大数据·sql·oracle·kafka·json
yx9o1 小时前
Kafka 源码 KRaft 模式本地运行
分布式·kafka
ycsdn101 小时前
Caused by: org.apache.flink.api.common.io.ParseException: Row too short:
大数据·flink
DolphinScheduler社区3 小时前
Apache DolphinScheduler + OceanBase,搭建分布式大数据调度平台的实践
大数据
时差9534 小时前
MapReduce 的 Shuffle 过程
大数据·mapreduce
kakwooi5 小时前
Hadoop---MapReduce(3)
大数据·hadoop·mapreduce
数新网络5 小时前
《深入浅出Apache Spark》系列②:Spark SQL原理精髓全解析
大数据·sql·spark