图像畸变矫正代码-Opencv实现

python 复制代码
import cv2
import numpy as np

# 读取图像
image = cv2.imread('distorted_image.jpg')

# 设置相机参数
camera_matrix = np.array([[1000, 0, 320], [0, 1000, 240], [0, 0, 1]])  # 相机内参矩阵
dist_coeffs = np.zeros((4, 1))  # 畸变系数

# 校正畸变
undistorted_image = cv2.undistort(image, camera_matrix, dist_coeffs)

# 显示结果
cv2.imshow('Distorted Image', image)
cv2.imshow('Undistorted Image', undistorted_image)

# 等待按键
cv2.waitKey(0)
cv2.destroyAllWindows()

在这段代码中,假设你已经有了相机的内参矩阵 camera_matrix 和畸变系数 dist_coeffs。函数 cv2.undistort() 接受原始图像、相机内参矩阵和畸变系数作为输入,并返回校正后的图像。请确保将 distorted_image.jpg 替换为你要校正畸变的图像文件名。

相机的内参矩阵(camera matrix)通常表示为一个3x3的矩阵,用来描述相机的内部参数,包括焦距和图像的主点。

内参矩阵的计算通常需要通过相机标定过程获得,这个过程需要一系列已知的特征点(例如棋盘格角点)的图像和它们在真实世界中的位置,通过这些对应关系,可以使用相机标定算法来计算相机的内参矩阵。

在 OpenCV 中,可以使用 cv2.calibrateCamera() 函数进行相机标定,该函数会返回相机内参矩阵以及畸变系数等参数。下面是一个简单的示例:

python 复制代码
import numpy as np
import cv2

# 准备用于相机标定的棋盘格图像及对应的世界坐标
chessboard_images = []  # 存储棋盘格图像
chessboard_corners = []  # 存储棋盘格角点的图像坐标
world_points = []  # 存储棋盘格角点的世界坐标

# 填充 chessboard_images 和 world_points

# 进行相机标定
ret, camera_matrix, dist_coeffs, _, _ = cv2.calibrateCamera(world_points, chessboard_corners, chessboard_images[0].shape[::-1], None, None)

# 输出相机内参矩阵和畸变系数
print("Camera Matrix:")
print(camera_matrix)
print("\nDistortion Coefficients:")
print(dist_coeffs)

畸变系数用于描述相机的镜头畸变,主要包括径向畸变和切向畸变。径向畸变是由于镜头的形状导致的,而切向畸变则是由于相机的镜头与图像平面不平行引起的。

在 OpenCV 中,通常使用五个畸变系数来描述镜头畸变,它们通常被表示为一个长度为5的向量:

k1​,k2​,p1​,p2​,k3​

其中:

  • k1,k2,k3 是径向畸变系数,它们描述了径向畸变的强度。
  • p1,p2 是切向畸变系数,它们描述了切向畸变的程度。

这些系数的计算通常需要通过相机标定来获取,与获取相机内参矩阵类似,需要使用已知的特征点图像坐标和它们对应的世界坐标。在 OpenCV 中,可以使用 cv2.calibrateCamera() 函数进行相机标定,该函数会返回畸变系数等参数。

python 复制代码
import numpy as np
import cv2

# 准备用于相机标定的棋盘格图像及对应的世界坐标
chessboard_images = []  # 存储棋盘格图像
chessboard_corners = []  # 存储棋盘格角点的图像坐标
world_points = []  # 存储棋盘格角点的世界坐标

# 填充 chessboard_images 和 world_points

# 进行相机标定
ret, camera_matrix, dist_coeffs, _, _ = cv2.calibrateCamera(world_points, chessboard_corners, chessboard_images[0].shape[::-1], None, None)

# 输出畸变系数
print("Distortion Coefficients:")
print(dist_coeffs)

cv2.calibrateCamera() 函数返回的 dist_coeffs 就是畸变系数向量。

相关推荐
非著名架构师8 分钟前
物流算法的“高阶变量”:高精度AI气象如何为智能供应链注入“天气理解力”,实现动态成本与风险最优?
人工智能·疾风气象大模型·高精度天气预报数据·galeweather.cn·高精度气象·风电光伏功率预测
后端小肥肠8 分钟前
Coze编程首测:我用大白话搭了个“AI漫剧流水线”,太离谱了!
人工智能·aigc·coze
倪偲0019 分钟前
livox/CustomMsg消息从ROS1 bag转换成ROS2
人工智能·机器人·自动驾驶
IT知识分享9 分钟前
中科天玑全要素AI舆情系统功能、架构解析
人工智能·语言模型·架构
AI营销资讯站25 分钟前
AI营销内容生产新趋势:原圈科技引领企业全球化内容智能升级
人工智能·科技
dagouaofei28 分钟前
AI自动生成PPT工具横评,真实使用感受分享
人工智能·python·powerpoint
JoannaJuanCV37 分钟前
自动驾驶—CARLA仿真(19)automatic_control demo
人工智能·机器学习·自动驾驶
热爱生活的五柒40 分钟前
PolSAR Image Registration——极化合成孔径雷达(PolSAR)图像配准
人工智能·计算机视觉·sar
qq_2337727141 分钟前
**给复杂机器“装上行车记录仪”:一篇量子论文如何照亮AI时代的信任之路**
人工智能
美林数据Tempodata41 分钟前
案例分享|西安财经大学打造全覆盖、全链条人工智能通识教育培养体系
人工智能