图像畸变矫正代码-Opencv实现

python 复制代码
import cv2
import numpy as np

# 读取图像
image = cv2.imread('distorted_image.jpg')

# 设置相机参数
camera_matrix = np.array([[1000, 0, 320], [0, 1000, 240], [0, 0, 1]])  # 相机内参矩阵
dist_coeffs = np.zeros((4, 1))  # 畸变系数

# 校正畸变
undistorted_image = cv2.undistort(image, camera_matrix, dist_coeffs)

# 显示结果
cv2.imshow('Distorted Image', image)
cv2.imshow('Undistorted Image', undistorted_image)

# 等待按键
cv2.waitKey(0)
cv2.destroyAllWindows()

在这段代码中,假设你已经有了相机的内参矩阵 camera_matrix 和畸变系数 dist_coeffs。函数 cv2.undistort() 接受原始图像、相机内参矩阵和畸变系数作为输入,并返回校正后的图像。请确保将 distorted_image.jpg 替换为你要校正畸变的图像文件名。

相机的内参矩阵(camera matrix)通常表示为一个3x3的矩阵,用来描述相机的内部参数,包括焦距和图像的主点。

内参矩阵的计算通常需要通过相机标定过程获得,这个过程需要一系列已知的特征点(例如棋盘格角点)的图像和它们在真实世界中的位置,通过这些对应关系,可以使用相机标定算法来计算相机的内参矩阵。

在 OpenCV 中,可以使用 cv2.calibrateCamera() 函数进行相机标定,该函数会返回相机内参矩阵以及畸变系数等参数。下面是一个简单的示例:

python 复制代码
import numpy as np
import cv2

# 准备用于相机标定的棋盘格图像及对应的世界坐标
chessboard_images = []  # 存储棋盘格图像
chessboard_corners = []  # 存储棋盘格角点的图像坐标
world_points = []  # 存储棋盘格角点的世界坐标

# 填充 chessboard_images 和 world_points

# 进行相机标定
ret, camera_matrix, dist_coeffs, _, _ = cv2.calibrateCamera(world_points, chessboard_corners, chessboard_images[0].shape[::-1], None, None)

# 输出相机内参矩阵和畸变系数
print("Camera Matrix:")
print(camera_matrix)
print("\nDistortion Coefficients:")
print(dist_coeffs)

畸变系数用于描述相机的镜头畸变,主要包括径向畸变和切向畸变。径向畸变是由于镜头的形状导致的,而切向畸变则是由于相机的镜头与图像平面不平行引起的。

在 OpenCV 中,通常使用五个畸变系数来描述镜头畸变,它们通常被表示为一个长度为5的向量:

k1​,k2​,p1​,p2​,k3​

其中:

  • k1,k2,k3 是径向畸变系数,它们描述了径向畸变的强度。
  • p1,p2 是切向畸变系数,它们描述了切向畸变的程度。

这些系数的计算通常需要通过相机标定来获取,与获取相机内参矩阵类似,需要使用已知的特征点图像坐标和它们对应的世界坐标。在 OpenCV 中,可以使用 cv2.calibrateCamera() 函数进行相机标定,该函数会返回畸变系数等参数。

python 复制代码
import numpy as np
import cv2

# 准备用于相机标定的棋盘格图像及对应的世界坐标
chessboard_images = []  # 存储棋盘格图像
chessboard_corners = []  # 存储棋盘格角点的图像坐标
world_points = []  # 存储棋盘格角点的世界坐标

# 填充 chessboard_images 和 world_points

# 进行相机标定
ret, camera_matrix, dist_coeffs, _, _ = cv2.calibrateCamera(world_points, chessboard_corners, chessboard_images[0].shape[::-1], None, None)

# 输出畸变系数
print("Distortion Coefficients:")
print(dist_coeffs)

cv2.calibrateCamera() 函数返回的 dist_coeffs 就是畸变系数向量。

相关推荐
冷眼看人间恩怨3 分钟前
【话题讨论】AI大模型重塑软件开发:定义、应用、优势与挑战
人工智能·ai编程·软件开发
2401_883041084 分钟前
新锐品牌电商代运营公司都有哪些?
大数据·人工智能
AI极客菌1 小时前
Controlnet作者新作IC-light V2:基于FLUX训练,支持处理风格化图像,细节远高于SD1.5。
人工智能·计算机视觉·ai作画·stable diffusion·aigc·flux·人工智能作画
阿_旭1 小时前
一文读懂| 自注意力与交叉注意力机制在计算机视觉中作用与基本原理
人工智能·深度学习·计算机视觉·cross-attention·self-attention
王哈哈^_^1 小时前
【数据集】【YOLO】【目标检测】交通事故识别数据集 8939 张,YOLO道路事故目标检测实战训练教程!
前端·人工智能·深度学习·yolo·目标检测·计算机视觉·pyqt
Power20246662 小时前
NLP论文速读|LongReward:基于AI反馈来提升长上下文大语言模型
人工智能·深度学习·机器学习·自然语言处理·nlp
数据猎手小k2 小时前
AIDOVECL数据集:包含超过15000张AI生成的车辆图像数据集,目的解决旨在解决眼水平分类和定位问题。
人工智能·分类·数据挖掘
好奇龙猫2 小时前
【学习AI-相关路程-mnist手写数字分类-win-硬件:windows-自我学习AI-实验步骤-全连接神经网络(BPnetwork)-操作流程(3) 】
人工智能·算法
沉下心来学鲁班2 小时前
复现LLM:带你从零认识语言模型
人工智能·语言模型
数据猎手小k2 小时前
AndroidLab:一个系统化的Android代理框架,包含操作环境和可复现的基准测试,支持大型语言模型和多模态模型。
android·人工智能·机器学习·语言模型