【力扣】整数反转,判断是否溢出的数学解法

整数反转原题地址

方法一:数学

反转整数

如何反转一个整数呢?考虑整数操作的3个技巧:

  1. xmod10 可以取出 x 的最低位,如 x=123 , xmod10=3 。
  2. x/=10 可以去掉 x 的最低位,如 x=123 , x/=10 , x=12 。
  3. x=x*10+y 可以在 x 后面续上 y ,其中 y 是一位数,如 x=123 , y=4 , x=x*10+y , x=1234 。

假设要反转的整数为 x ,反转后的整数存储在变量 rev 中, rev 一开始初始化为 0 ,那么反复执行以下操作:

  1. digit=xmod10 ,取出 x 的最低位数。
  2. x/=10 ,去掉 x 的最低位数。
  3. rev=rev*10+digit ,在 rev 后面续上 digit 。

直到 x 为 0 为止,此时 rev 存储的数据符合题目要求。

判断溢出

问题在于,如何判断插入后的数据是否超出 [INT_MIN,INT_MAX] 的范围,导致溢出?

我们来探索不等式 成立的充分必要条件。

先看右半边,即

对于任意整数 i ,我们有 ,如对于 123 , 123/10=12 , 123mod10=3 , 123=12*10+3 。

不等式化为: ,带入

移项化简得: ,记

  1. 当 rev=m 时,如果还要推入数字,那么 digit≤2 ,因为 INT_MAX 的最高位为 2 ,此时不等式左边等于 0 ,右边为正数,不等式恒成立。
  2. 当 rev>m 时,不等式左边至少是 10 ,右边至多是 7 ,不等式恒不成立。
  3. 当 rev<m 时,不等式左边至多是 -10 ,右边至少是 7-9=-2 ,不等式恒成立。

所以原不等式右半边成立的充分必要条件是 ,即 。同理左半边成立的充分必要条件是

原不等式成立的充分必要条件是

cpp 复制代码
// 方法一:数学
class Solution
{
public:
    int reverse(int x)
    {
        int rev = 0;
        while (x)
        {
            if (rev < INT_MIN / 10 || rev > INT_MAX / 10)
            {
                return 0;
            }

            // rev 后面续上 x 的最低位
            rev = rev * 10 + x % 10;
            // 去掉 x 的最低位
            x /= 10;
        }

        return rev;
    }
};
相关推荐
拓端研究室2 小时前
视频讲解:门槛效应模型Threshold Effect分析数字金融指数与消费结构数据
前端·算法
随缘而动,随遇而安4 小时前
第八十八篇 大数据中的递归算法:从俄罗斯套娃到分布式计算的奇妙之旅
大数据·数据结构·算法
IT古董4 小时前
【第二章:机器学习与神经网络概述】03.类算法理论与实践-(3)决策树分类器
神经网络·算法·机器学习
Alfred king7 小时前
面试150 生命游戏
leetcode·游戏·面试·数组
水木兰亭7 小时前
数据结构之——树及树的存储
数据结构·c++·学习·算法
June bug8 小时前
【软考中级·软件评测师】下午题·面向对象测试之架构考点全析:分层、分布式、微内核与事件驱动
经验分享·分布式·职场和发展·架构·学习方法·测试·软考
Jess078 小时前
插入排序的简单介绍
数据结构·算法·排序算法
老一岁8 小时前
选择排序算法详解
数据结构·算法·排序算法
xindafu8 小时前
代码随想录算法训练营第四十二天|动态规划part9
算法·动态规划
xindafu8 小时前
代码随想录算法训练营第四十五天|动态规划part12
算法·动态规划