【力扣】整数反转,判断是否溢出的数学解法

整数反转原题地址

方法一:数学

反转整数

如何反转一个整数呢?考虑整数操作的3个技巧:

  1. xmod10 可以取出 x 的最低位,如 x=123 , xmod10=3 。
  2. x/=10 可以去掉 x 的最低位,如 x=123 , x/=10 , x=12 。
  3. x=x*10+y 可以在 x 后面续上 y ,其中 y 是一位数,如 x=123 , y=4 , x=x*10+y , x=1234 。

假设要反转的整数为 x ,反转后的整数存储在变量 rev 中, rev 一开始初始化为 0 ,那么反复执行以下操作:

  1. digit=xmod10 ,取出 x 的最低位数。
  2. x/=10 ,去掉 x 的最低位数。
  3. rev=rev*10+digit ,在 rev 后面续上 digit 。

直到 x 为 0 为止,此时 rev 存储的数据符合题目要求。

判断溢出

问题在于,如何判断插入后的数据是否超出 [INT_MIN,INT_MAX] 的范围,导致溢出?

我们来探索不等式 成立的充分必要条件。

先看右半边,即

对于任意整数 i ,我们有 ,如对于 123 , 123/10=12 , 123mod10=3 , 123=12*10+3 。

不等式化为: ,带入

移项化简得: ,记

  1. 当 rev=m 时,如果还要推入数字,那么 digit≤2 ,因为 INT_MAX 的最高位为 2 ,此时不等式左边等于 0 ,右边为正数,不等式恒成立。
  2. 当 rev>m 时,不等式左边至少是 10 ,右边至多是 7 ,不等式恒不成立。
  3. 当 rev<m 时,不等式左边至多是 -10 ,右边至少是 7-9=-2 ,不等式恒成立。

所以原不等式右半边成立的充分必要条件是 ,即 。同理左半边成立的充分必要条件是

原不等式成立的充分必要条件是

cpp 复制代码
// 方法一:数学
class Solution
{
public:
    int reverse(int x)
    {
        int rev = 0;
        while (x)
        {
            if (rev < INT_MIN / 10 || rev > INT_MAX / 10)
            {
                return 0;
            }

            // rev 后面续上 x 的最低位
            rev = rev * 10 + x % 10;
            // 去掉 x 的最低位
            x /= 10;
        }

        return rev;
    }
};
相关推荐
POLITE33 分钟前
Leetcode 146. LRU 缓存 (Day 13)
算法·leetcode·缓存
小O的算法实验室11 分钟前
2023年CIE SCI2区TOP,ACO+PSO+A*:一种用于 AUV 多任务路径规划的双层混合算法,深度解析+性能实测
算法·论文复现·智能算法·智能算法改进
Ro Jace14 分钟前
A Real-Time Cross Correlator for Neurophysiological Research
人工智能·python·算法
Sheep Shaun29 分钟前
深入理解红黑树:从概念到完整C++实现详解
java·开发语言·数据结构·c++·b树·算法
Dave.B29 分钟前
:vtkBooleanOperationPolyDataFilter 布尔运算全解析
算法·vtk
易晨 微盛·企微管家34 分钟前
2025企业微信AI智能机器人实战指南:3步实现客服自动化
大数据·人工智能·算法
jiaguangqingpanda35 分钟前
Day26-20260122
java·算法·排序算法
踩坑记录40 分钟前
leetcode hot100 160.相交链表 easy 链表双指针
leetcode
secondyoung41 分钟前
队列原理与实现全解析
c语言·数据库·mysql·算法·队列
kuiini42 分钟前
scikit-learn 常用算法与评估方法【Plan 7】
python·算法·scikit-learn