使用huggingface的text embedding models

python 复制代码
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_community.vectorstores import FAISS
from langchain_community.llms import Tongyi
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
from langchain_community.embeddings import HuggingFaceEmbeddings
import os
import time
os.environ["DASHSCOPE_API_KEY"] = "sk-cc1c8314fdbd43ceaf26ec1824d5dd3b"
llm = Tongyi()

from langchain_community.document_loaders import UnstructuredURLLoader

embeddings = HuggingFaceEmbeddings()

# 记录开始时间
start_time = time.time()
text = "This is a test document."

query_result = embeddings.embed_query(text)

end_time = time.time()
# 计算并打印函数执行时间
execution_time = end_time - start_time
print(f"函数执行时间: {execution_time} 秒")
print(query_result[:3])


urls = [
    "https://en.wikipedia.org/wiki/Android_(operating_system)"
]

loader = UnstructuredURLLoader(urls=urls)
documents = loader.load_and_split()
# print(documents)


# # 第一次存入本地
# vectorstore = FAISS.from_documents(documents, embeddings)
# vectorstore.save_local("faiss_index2")


# 记录开始时间
start_time = time.time()

# # 从本地加载
vectorstore = FAISS.load_local("faiss_index2", embeddings)

retriever = vectorstore.as_retriever()
template = """Answer the question based on the context below. If the
question cannot be answered using the information provided answer
with "I don't know"     

Context: {context}

Question: {question}
"""
prompt = ChatPromptTemplate.from_template(template)

output_parser = StrOutputParser()
setup_and_retrieval = RunnableParallel(
    {"context": retriever, "question": RunnablePassthrough()}
)
chain = setup_and_retrieval | prompt | llm | output_parser
print(chain.invoke("what is android"))
# 计算并打印函数执行时间
end_time = time.time()
execution_time = end_time - start_time
print(f"函数执行时间: {execution_time} 秒")

上面是使用的默认的模型,以下指定使用 all-MiniLM-L6-v2:

python 复制代码
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_community.vectorstores import FAISS
from langchain_community.llms import Tongyi
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
from langchain_community.embeddings import HuggingFaceEmbeddings
import os
import time
os.environ["DASHSCOPE_API_KEY"] = "sk-cc1c8314fdbd43ceaf26ec1824d5dd3b"
llm = Tongyi()

from langchain_community.document_loaders import UnstructuredURLLoader
model_name = "all-MiniLM-L6-v2"
embeddings = HuggingFaceEmbeddings(
         model_name=model_name,
)

# 记录开始时间
start_time = time.time()
text = "This is a test document."

query_result = embeddings.embed_query(text)

end_time = time.time()
# 计算并打印函数执行时间
execution_time = end_time - start_time
print(f"函数执行时间: {execution_time} 秒")
print(query_result[:3])


urls = [
    "https://en.wikipedia.org/wiki/Android_(operating_system)"
]

loader = UnstructuredURLLoader(urls=urls)
documents = loader.load_and_split()
# print(documents)


# 记录开始时间
start_time = time.time()

# 第一次存入本地
vectorstore = FAISS.from_documents(documents, embeddings)
vectorstore.save_local("faiss_index2")


# # 从本地加载
# vectorstore = FAISS.load_local("faiss_index2", embeddings)

retriever = vectorstore.as_retriever()
template = """Answer the question based on the context below. If the
question cannot be answered using the information provided answer
with "I don't know"     

Context: {context}

Question: {question}
"""
prompt = ChatPromptTemplate.from_template(template)

output_parser = StrOutputParser()
setup_and_retrieval = RunnableParallel(
    {"context": retriever, "question": RunnablePassthrough()}
)
chain = setup_and_retrieval | prompt | llm | output_parser
print(chain.invoke("what is android"))
# 计算并打印函数执行时间
end_time = time.time()
execution_time = end_time - start_time
print(f"函数执行时间: {execution_time} 秒")

关于可以使用的模型,可以看这里

相关推荐
Christo318 小时前
关于在深度聚类中Representation Collapse现象
人工智能·深度学习·算法·机器学习·数据挖掘·embedding·聚类
SHIPKING3932 天前
【嵌入模型与向量数据库】
embedding·faiss·向量数据库·阿里百炼
工头阿乐3 天前
PyTorch中的nn.Embedding应用详解
人工智能·pytorch·embedding
浪淘沙jkp3 天前
AI大模型学习二十、利用Dify+deepseekR1 使用知识库搭建初中英语学习智能客服机器人
人工智能·llm·embedding·agent·知识库·dify·deepseek
明明跟你说过4 天前
深入理解Embedding Models(嵌入模型):从原理到实战(下)
人工智能·语言模型·embedding
yibuapi_com6 天前
Embedding 的数学特性与可视化解析
chatgpt·架构·langchain·embedding·claude·向量数据库·中转api
仙人掌_lz7 天前
为特定领域微调嵌入模型:打造专属的自然语言处理利器
人工智能·ai·自然语言处理·embedding·强化学习·rl·bge
背太阳的牧羊人17 天前
OpenAI Embedding 和密集检索(如 BERT/DPR)进行语义相似度搜索有什么区别和联系
人工智能·bert·embedding
ai大模型木子21 天前
嵌入模型(Embedding Models)原理详解:从Word2Vec到BERT的技术演进
人工智能·自然语言处理·bert·embedding·word2vec·ai大模型·大模型资料
老马啸西风1 个月前
Neo4j GDS-13-neo4j GDS 库中节点插入算法实现
数据库·算法·云原生·中间件·embedding·neo4j