编译opencv gpu版的条件

一、具备以下条件即可编译opencv gpu:

1、 终端设备必须有独立显卡。cmd窗口:nvidia-smi查看显卡信息

2、下载并安装CUDA Toolkit(根据显卡下载对应的CUDA Toolkit软件)、cuDNN(根据CUDA版本下载对应的cuDNN)。

3、下载cmake 3.16.2并安装。

4、下载opencv4.5.4源码。

5、根据情况下载contrib库,不需要可以不下载,不影响GPU功能的使用。

二、需要安装的软件

1、contrib(可选):最好安装,以避不时之需,不装有些功能可能用不了,需要时再编译很麻烦。

1)扩展算法:contrib库包含了一些扩展的图像处理,计算机视觉和机器学习算法、超分辨率、图像修复、SIFT/SURF特征提取器等。

2)深度学习支持,:contrib库中包含了一些深度学习相关的模块和功能,例如:深度学习模型的加载和推断,基于深度学习的图像分类、目标检测等。

3)3D视觉:包括用于立体视觉、三维重建和结构光等领域的算法和工具。

4)追踪器:contrib库提供了一些对象追踪算法,用于跟踪视频中的对象,如基于特征点的跟踪器、卡尔曼滤波器等。

5)医学图像处理:包括用于医学图像片和分析的一些功能和算法,如:图像分割、特征提取、病变检测等。

6)可视化工具:contrib库中也包含了一些用于图像和数据可视化的工具和函数,用于在opencv中进行交互式可视化和调试。

2、CUDA安装(必选)

版本:12.3.2

注意事项:

1)如果已安装VS2019或2017,则可以勾选visual studio integration,否则自定义中去掉勾选。

2)去掉勾选:Nsight Compute。

3)开始安装->成功

4)把安装包扩展名修改为rar,然后解压,找到Nsight Compute文件夹,单独安装该模块。

3、cuDNN安装(必选)

下载后把bin、lib、include文件夹中的内容粘贴到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.3的对应目录中

4、cmake2.16.2安装(略)

三、下列软件与编译opencv gpu没有任何关系,这里只做安装说明

1、Anaconda安装:这是一款包含工具和库的软件,其中包含conda包管理工具,与python中的pip包管理工具相同,只是anaconda软件中带的这个包管理工具更加方便,能够自动处理各种依赖关系。

安装包:Anaconda3-2023.09-0-Windows-x86_64.exe,安装后添加到系统路径中

2、pytorch安装:这是用于python的一个库,只是这个库需要单独安装,功能比较强大而已。安装了你就可以使用它的工具和库,不安装就不能使用。

1)创建新虚拟环境

2)系统管理员cmd窗口中:conda create -n torch_gpu python=3.12

3)激活虚拟环境:conda activate torch_gpu (如果取消:conda deactivate)

4)安装pytorch步骤:

A:进入官网:https://pytorch.org

B:选择pytorch安装选项:(python版)

stable(2.2.1)

windows

conda

python

cuda12.1

5)网页会自动生成cmd命令:conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia

6)系统管理员CMD窗口中:执行上面命令,注意一定要在虚拟环境中执行。 注意python版本:3.8以上才能安装pytorch,当前是3.12

7)验证:

1)python

2)>>>import torch

  1. >>>print(torch.cuda.is.availabled()) //返回true为成功

4)>>>print(torch.cuda.device_count()) //返回1 为成功

秋风写于淄博,业务联系与技术交流:Q375172665

相关推荐
Tech Synapse19 分钟前
电商商品推荐系统实战:基于TensorFlow Recommenders构建智能推荐引擎
人工智能·python·tensorflow
帅帅的Python19 分钟前
2015-2023 各省 GDP 数据,用QuickBI 进行数据可视化——堆叠图!
大数据·人工智能
weixin_4307509328 分钟前
智能小助手部署 Win10 + ollama的Deepseek + CentOS+ maxKB
linux·人工智能·机器学习·语言模型·自然语言处理·centos
Panesle33 分钟前
大模型微调与蒸馏的差异性与相似性分析
人工智能·微调·蒸馏
多巴胺与内啡肽.33 分钟前
深度学习--循环神经网络RNN
人工智能·rnn·深度学习
子燕若水42 分钟前
解释PyTorch中的广播机制
人工智能·pytorch·python
计算机真好丸43 分钟前
第R4周:LSTM-火灾温度预测
人工智能·rnn·lstm
数据与人工智能律师1 小时前
正确应对监管部门的数据安全审查
大数据·网络·数据库·人工智能·区块链
知来者逆1 小时前
计算机视觉——对比YOLOv12、YOLOv11、和基于Darknet的YOLOv7的微调对比
深度学习·yolo·目标检测·计算机视觉·yolov7·yolov11·yolov12
偶尔微微一笑1 小时前
sgpt在kali应用
linux·人工智能·python·自然语言处理