Apple的这篇人工智能论文提出了声学模型融合,用以大幅降低语音识别系统中的单词错误率

Apple人工智能论文在提高自动语音识别 (ASR) 系统的准确性和效率方面取得了重大改进。最近的研究深入探讨将外部声学模型 (AM) 集成到端到端 (E2E) ASR 系统中,提出了一种解决域不匹配这一持续挑战的方法,这是语音识别技术中的常见障碍。Apple的这种方法称为声学模型融合 (AMF),旨在通过利用外部声学模型的优势来补充E2E系统的固有功能,从而完善语音识别过程。

早期的E2E ASR系统以其精简的架构而闻名,将所有必要的语音识别组件组合到一个神经网络中。这种集成促进了系统的学习过程,使其能够直接根据音频输入预测字符或单词序列。尽管该模型提供了简化和效率,但在处理训练数据中代表性不足的罕见或复杂单词时,它遇到了限制。以前的工作主要集中在合并外部语言模型(LM)以增强系统的词汇量。该解决方案必须完全解决模型的内部声学理解与其多样化的现实应用之间的领域不匹配问题。

Apple研究团队的AMF技术为解决这一问题提供了突破性的解决方案。通过将外部AM与E2E系统集成,AMF为系统提供了更广泛的声学知识,并显着降低了字错误率(WER)。该方法涉及仔细地将外部AM的分数与E2E系统的分数进行插值,类似于浅层融合技术,但明显应用于声学建模。这种创新方法证明了系统性能的显着改进,特别是在识别命名实体和解决稀有词的挑战方面。

AMF的功效通过一系列使用不同数据集的实验进行了严格测试,包括虚拟助理查询、口述句子和合成音频文本对,旨在测试系统准确识别命名实体的能力。这些测试的结果令人信服,显示 WER 显着降低------不同测试集高达 14.3%。这一成就凸显了AMF在提高ASR系统准确性和可靠性方面的潜力。

这项研究的一些主要发现和贡献包括:

  • 声学模型融合作为一种将外部声学知识集成到E2E ASR系统中的新颖方法的引入解决了域不匹配问题;

  • 单词错误率显着降低,在各种测试集上提高了14.3%,展示了AMF在提高语音识别准确性方面的有效性;

  • 增强了对命名实体和稀有词的识别,强调了该方法在提高系统词汇量和适应性方面的潜力;

  • AMF相对于传统LM集成方法的优越性的展示为ASR技术的未来发展提供了方向。

这项研究的影响是深远的,为更准确、更高效、适应性更强的语音识别系统铺平了道路。声学模型融合在减轻领域不匹配和提高单词识别方面的成功为在众多领域应用ASR技术开辟了新途径。这项研究为语音识别做出了重大创新,并为通过语音寻求完美人机交互的进一步探索和发展奠定了基础。

信息源于:marktechpost

相关推荐
吴佳浩13 分钟前
Python入门指南(七) - YOLO检测API进阶实战
人工智能·后端·python
tap.AI20 分钟前
RAG系列(二)数据准备与向量索引
开发语言·人工智能
老蒋新思维1 小时前
知识IP的长期主义:当AI成为跨越增长曲线的“第二曲线引擎”|创客匠人
大数据·人工智能·tcp/ip·机器学习·创始人ip·创客匠人·知识变现
货拉拉技术1 小时前
出海技术挑战——Lalamove智能告警降噪
人工智能·后端·监控
wei20231 小时前
汽车智能体Agent:国务院“人工智能+”行动意见 对汽车智能体领域 革命性重塑
人工智能·汽车·agent·智能体
LinkTime_Cloud1 小时前
快手遭遇T0级“黑色闪电”:一场教科书式的“协同打击”,披上了AI“智能外衣”的攻击
人工智能
PPIO派欧云2 小时前
PPIO上线MiniMax-M2.1:聚焦多语言编程与真实世界复杂任务
人工智能
隔壁阿布都2 小时前
使用LangChain4j +Springboot 实现大模型与向量化数据库协同回答
人工智能·spring boot·后端
Coding茶水间2 小时前
基于深度学习的水面垃圾检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
乐迪信息2 小时前
乐迪信息:煤矿皮带区域安全管控:人员违规闯入智能识别
大数据·运维·人工智能·物联网·安全