BERT:基于TensorFlow的BERT模型搭建中文问答系统模型

目录

    • 1、导入所需库
    • 2、准备数据集
    • 3、对问题和答案进行分词
    • 4、构建模型
    • 5、编译模型
    • 6、训练模型
    • 7、评估模型
    • 8、使用模型进行预测

1、导入所需库

python 复制代码
#导入numpy库,用于进行数值计算
import numpy as np

#从Keras库中导入Tokenizer类,用于将文本转换为序列
from keras.preprocessing.text import Tokenizer
 
#从Keras库中导入pad_sequences函数,用于对序列进行填充或截断
from keras.preprocessing.sequence import pad_sequences

#从Keras库中导入Model类,用于构建神经网络模型
from keras.models import Model  

#从Keras库中导入Input、Dense、LSTM和Dropout类,用于构建神经网络层
from keras.layers import Input, Dense, LSTM, Dropout

#从transformers库中导入TFBertModel和BertTokenizer类,用于使用BERT模型和分词器 
from transformers import TFBertModel, BertTokenizer

2、准备数据集

python 复制代码
#这里使用一个简单的示例数据集,定义问题和答案的列表。在实际应用中需要根据实际问题调整数据格式
questions = ['你好吗?', '你叫什么名字?', '你喜欢什么运动?']
answers = ['我很好!', '我叫小明。', '我喜欢打篮球。']

3、对问题和答案进行分词

python 复制代码
#从预训练模型中加载BertTokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')

#使用tokenizer对问题列表进行分词处理,并返回input_ids
question_input_ids = tokenizer(questions, return_tensors='tf', padding=True, truncation=True)['input_ids']

#使用tokenizer对答案列表进行分词处理,并返回input_ids
answer_input_ids = tokenizer(answers, return_tensors='tf', padding=True, truncation=True)['input_ids']

4、构建模型

python 复制代码
#导入预训练的BERT模型,使用中文基础版本
bert_model = TFBertModel.from_pretrained('bert-base-chinese')

#定义输入层,形状为(None,),数据类型为int32
input_layer = Input(shape=(None,), dtype='int32')

#将输入层传递给BERT模型,获取输出结果的第一个元素(即[0])
bert_output = bert_model(input_layer)[0]

#在BERT输出上添加一个LSTM层,隐藏单元数为100
lstm_layer = LSTM(100)(bert_output)

#在LSTM层上添加一个Dropout层,丢弃率为0.5
dropout_layer = Dropout(0.5)(lstm_layer)

#在Dropout层上添加一个全连接层,输出单元数为answer_input_ids集合的长度,激活函数为softmax
output_layer = Dense(len(set(answer_input_ids)), activation='softmax')(dropout_layer)

#构建模型,输入层为input_layer,输出层为output_layer
model = Model(inputs=input_layer, outputs=output_layer)

5、编译模型

python 复制代码
#设置损失函数为分类交叉熵,优化器为Adam,评估指标为准确率
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

6、训练模型

python 复制代码
#使用模型的fit方法进行训练,传入问题输入ID、答案输入ID、批量大小和训练轮数
model.fit(question_input_ids, answer_input_ids, batch_size=32, epochs=10)

7、评估模型

python 复制代码
score = model.evaluate(question_input_ids, answer_input_ids)
print('Test loss:', score[0])
print('Test accuracy:', score[1])

8、使用模型进行预测

python 复制代码
def predict(question):
    #使用tokenizer对输入的问题进行编码,返回一个字典,其中包含'input_ids'键对应的值
    question_input_id = tokenizer(question, return_tensors='tf', padding=True, truncation=True)['input_ids']
    #使用模型对编码后的问题进行预测,得到预测结果
    prediction = model.predict(question_input_id)
    #返回预测结果中概率最大的索引
    return np.argmax(prediction)
    
question = '你喜欢吃什么?'
#调用predict函数,传入问题字符串,得到预测的答案索引
answer_index = predict(question)
#使用tokenizer将答案索引解码为文本形式
predicted_answer = tokenizer.decode([answer_index])
#打印预测的答案
print('Predicted answer:', predicted_answer)
相关推荐
natide6 分钟前
text-generateion-webui模型加载器(Model Loaders)选项
人工智能·llama
野生的码农13 分钟前
码农的妇产科实习记录
android·java·人工智能
TechubNews21 分钟前
2026 年观察名单:基于 a16z「重大构想」,详解稳定币、RWA 及 AI Agent 等 8 大流行趋势
大数据·人工智能·区块链
脑极体34 分钟前
机器人的罪与罚
人工智能·机器人
三不原则40 分钟前
故障案例:容器启动失败排查(AI运维场景)——从日志分析到根因定位
运维·人工智能·kubernetes
点云SLAM1 小时前
凸优化(Convex Optimization)理论(1)
人工智能·算法·slam·数学原理·凸优化·数值优化理论·机器人应用
会周易的程序员1 小时前
多模态AI 基于工业级编译技术的PLC数据结构解析与映射工具
数据结构·c++·人工智能·单例模式·信息可视化·架构
BlockWay1 小时前
WEEX 成为 LALIGA 西甲联赛香港及台湾地区官方区域合作伙伴
大数据·人工智能·安全
虹科网络安全1 小时前
艾体宝案例 | 从关系到语义:ArangoDB如何支撑高精度水军识别
人工智能
大霸王龙1 小时前
MinIO 对象存储系统架构图集
人工智能·llm·minio