BERT:基于TensorFlow的BERT模型搭建中文问答系统模型

目录

    • 1、导入所需库
    • 2、准备数据集
    • 3、对问题和答案进行分词
    • 4、构建模型
    • 5、编译模型
    • 6、训练模型
    • 7、评估模型
    • 8、使用模型进行预测

1、导入所需库

python 复制代码
#导入numpy库,用于进行数值计算
import numpy as np

#从Keras库中导入Tokenizer类,用于将文本转换为序列
from keras.preprocessing.text import Tokenizer
 
#从Keras库中导入pad_sequences函数,用于对序列进行填充或截断
from keras.preprocessing.sequence import pad_sequences

#从Keras库中导入Model类,用于构建神经网络模型
from keras.models import Model  

#从Keras库中导入Input、Dense、LSTM和Dropout类,用于构建神经网络层
from keras.layers import Input, Dense, LSTM, Dropout

#从transformers库中导入TFBertModel和BertTokenizer类,用于使用BERT模型和分词器 
from transformers import TFBertModel, BertTokenizer

2、准备数据集

python 复制代码
#这里使用一个简单的示例数据集,定义问题和答案的列表。在实际应用中需要根据实际问题调整数据格式
questions = ['你好吗?', '你叫什么名字?', '你喜欢什么运动?']
answers = ['我很好!', '我叫小明。', '我喜欢打篮球。']

3、对问题和答案进行分词

python 复制代码
#从预训练模型中加载BertTokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')

#使用tokenizer对问题列表进行分词处理,并返回input_ids
question_input_ids = tokenizer(questions, return_tensors='tf', padding=True, truncation=True)['input_ids']

#使用tokenizer对答案列表进行分词处理,并返回input_ids
answer_input_ids = tokenizer(answers, return_tensors='tf', padding=True, truncation=True)['input_ids']

4、构建模型

python 复制代码
#导入预训练的BERT模型,使用中文基础版本
bert_model = TFBertModel.from_pretrained('bert-base-chinese')

#定义输入层,形状为(None,),数据类型为int32
input_layer = Input(shape=(None,), dtype='int32')

#将输入层传递给BERT模型,获取输出结果的第一个元素(即[0])
bert_output = bert_model(input_layer)[0]

#在BERT输出上添加一个LSTM层,隐藏单元数为100
lstm_layer = LSTM(100)(bert_output)

#在LSTM层上添加一个Dropout层,丢弃率为0.5
dropout_layer = Dropout(0.5)(lstm_layer)

#在Dropout层上添加一个全连接层,输出单元数为answer_input_ids集合的长度,激活函数为softmax
output_layer = Dense(len(set(answer_input_ids)), activation='softmax')(dropout_layer)

#构建模型,输入层为input_layer,输出层为output_layer
model = Model(inputs=input_layer, outputs=output_layer)

5、编译模型

python 复制代码
#设置损失函数为分类交叉熵,优化器为Adam,评估指标为准确率
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

6、训练模型

python 复制代码
#使用模型的fit方法进行训练,传入问题输入ID、答案输入ID、批量大小和训练轮数
model.fit(question_input_ids, answer_input_ids, batch_size=32, epochs=10)

7、评估模型

python 复制代码
score = model.evaluate(question_input_ids, answer_input_ids)
print('Test loss:', score[0])
print('Test accuracy:', score[1])

8、使用模型进行预测

python 复制代码
def predict(question):
    #使用tokenizer对输入的问题进行编码,返回一个字典,其中包含'input_ids'键对应的值
    question_input_id = tokenizer(question, return_tensors='tf', padding=True, truncation=True)['input_ids']
    #使用模型对编码后的问题进行预测,得到预测结果
    prediction = model.predict(question_input_id)
    #返回预测结果中概率最大的索引
    return np.argmax(prediction)
    
question = '你喜欢吃什么?'
#调用predict函数,传入问题字符串,得到预测的答案索引
answer_index = predict(question)
#使用tokenizer将答案索引解码为文本形式
predicted_answer = tokenizer.decode([answer_index])
#打印预测的答案
print('Predicted answer:', predicted_answer)
相关推荐
lanyancloud_JX20 分钟前
公路工程项目管理软件选型指南
人工智能
柠檬味拥抱21 分钟前
基于Rokid CXR-M和CXR-S SDK构建简易翻译助手
人工智能
用户51914958484522 分钟前
在VS Code IDE中通过LocalStack集成加速无服务器测试
人工智能·aigc
FreeCode29 分钟前
智能体化系统(Agentic System)开发面临的挑战及应对
人工智能·agent
leafff1231 小时前
Stable Diffusion在进行AI 创作时对算力的要求
人工智能·stable diffusion
Juchecar1 小时前
AI大模型商业模式分析
人工智能
leafff1231 小时前
Stable Diffusion进行AIGC创作时的算力优化方案
人工智能·stable diffusion·aigc
FIN66681 小时前
昂瑞微:以射频“芯”火 点亮科技强国之路
前端·人工智能·科技·前端框架·智能
Python智慧行囊1 小时前
图像处理(三)--开运算与闭运算,梯度运算,礼帽与黑帽
人工智能·算法·计算机视觉
亚马逊云开发者1 小时前
Amazon Generative AI Use Cases:“开箱即用的企业级生成式AI应用平台”
人工智能