使用pytorch实现一个线性回归训练函数

使用sklearn.dataset 的make_regression创建用于线性回归的数据集

python 复制代码
def create_dataset():
    x, y, coef = make_regression(n_samples=100, noise=10, coef=True, bias=14.5, n_features=1, random_state=0)
    return torch.tensor(x), torch.tensor(y), coef

加载数据集,并拆分batchs训练集

python 复制代码
def load_dataset(x, y, batch_size):
    data_len = len(y)
    batch_num = data_len // batch_size
    for idx in range(batch_num):
        start = idx * batch_num
        end = idx * batch_num + batch_num
        train_x = x[start : end]
        train_y = y[start : end]
        yield train_x, train_y

定义初始权重和定义计算函数

python 复制代码
w = torch.tensor(0.1, requires_grad=True, dtype=torch.float64)
b = torch.tensor(0, requires_grad=True, dtype=torch.float64)
def linear_regression(x):
    return x * w + b

损失函数使用平方差

python 复制代码
def linear_loss(y_pred, y_true):
    return (y_pred - y_true) ** 2

优化参数使用梯度下降方法

python 复制代码
def sgd(linear_rate, batch_size):
    w.data = w.data - linear_rate * w.grad / batch_size
    b.data = b.data - linear_rate * b.grad / batch_size

训练代码

python 复制代码
def train():
    # 加载数据
    x, y, coef = create_dataset()
    data_len = len(y)

    # 定义参数
    batch_size = 10
    epochs = 100
    linear_rate = 0.01

    # 记录损失值
    epochs_loss = []

    # 迭代
    for eid in range(epochs):
        total_loss = 0.0
        for train_x, train_y in load_dataset(x, y, batch_size):
            # 输入模型
            y_pred = linear_regression(train_x)

            # 计算损失
            loss_num = linear_loss(y_pred, train_y.reshape(-1,1)).sum()

            # 梯度清理
            if w.grad is not None:
                w.grad.zero_()
            if b.grad is not None:
                b.grad.zero_()

            # 反向传播
            loss_num.backward()

            # 更新权重
            sgd(linear_rate, batch_size)

            # 统计损失数值
            total_loss = total_loss + loss_num.item()

        # 记录本次迭代的平均损失
        b_loss = total_loss / data_len
        epochs_loss.append(b_loss)
        print("epoch={},b_loss={}".format(eid, b_loss))

    # 显示预测线核真实线的拟合关系
    print(w, b)
    print(coef, 14.5)

    plt.scatter(x, y)

    test_x = torch.linspace(x.min(), x.max(), 1000)
    y1 = torch.tensor([v * w + b for v in test_x])
    y2 = torch.tensor([v * coef + 14.5 for v in test_x])
    plt.plot(test_x, y1, label='train')
    plt.plot(test_x, y2, label='true')
    plt.grid()
    plt.show()

    # 显示损失值变化曲线
    plt.plot(range(epochs), epochs_loss)
    plt.show()

拟合显示还不错

损失值在低5次迭代后基本就很小了

相关推荐
Echo_NGC22372 分钟前
【DDPM 扩散模型】Part 7:最后总结!Denoising Diffusion Probabilistic Models论文全维度详解
人工智能·深度学习·神经网络·扩散模型·ddpm·高斯噪声
有为少年14 分钟前
数据增强在小型卷积神经网络中的有效性探究
人工智能·深度学习·神经网络·机器学习·cnn
老马啸西风1 小时前
成熟企业级技术平台 MVE-010-跳板机 / 堡垒机(Jump Server / Bastion Host)
人工智能·深度学习·算法·职场和发展
Cathyqiii1 小时前
Diff-MTS: Temporal-Augmented ConditionalDiffusion-Based AIGC
深度学习·aigc
chataipaper0021 小时前
10款免费降ai率工具合集,轻松搞定论文降AIGC!【2025学姐亲测】
人工智能·深度学习·aigc·降ai·论文ai率
cyyt2 小时前
深度学习周报(12.8~12.14)
人工智能·深度学习
【建模先锋】2 小时前
多源信息融合!基于特征信号VMD分解+CNN-Transformer的故障诊断模型!
人工智能·深度学习·cnn·transformer·故障诊断·多源信息融合
中國龍在廣州2 小时前
AI顶会ICML允许AI参与审稿
人工智能·深度学习·算法·机器学习·chatgpt
自动驾驶小学生2 小时前
Transformer和LLM前沿内容(1):Transformer and LLM(注定成为经典)
人工智能·深度学习·llm·transformer
longvoyage2 小时前
MindSpore社区活动:在对抗中增强网络
网络·人工智能·深度学习