【MATLAB】MVMD_ MFE_SVM_LSTM 神经网络时序预测算法

有意向获取代码,请转文末观看代码获取方式~也可转原文链接获取~

1 基本定义

MVMD_MFE_SVM_LSTM神经网络时序预测算法结合了多变量多尺度分解(MVMD)、多尺度特征提取(MFE)、支持向量机(SVM)和长短期记忆神经网络(LSTM)的方法,旨在实现对多变量时间序列的高精度预测。以下是关于该算法的详细介绍:

1. 多变量多尺度分解(MVMD)

  • MVMD是一种针对多变量时间序列的分解方法,它能够对多个时间序列同时进行经验模态分解。与单变量时间序列分解方法不同,MVMD能够考虑到多个时间序列之间的相互关系,提取出每个时间序列中的复杂模式和趋势。

  • 通过MVMD,多个时间序列被分解为一系列固有模式函数(IMF)和残差项。这些IMF和残差项代表了原始时间序列中的不同频率和尺度成分,为后续的特征提取和预测提供了基础。

2. 多尺度特征提取(MFE)

  • MFE技术用于从MVMD得到的IMF和残差项中提取多尺度特征。这些特征包括统计特性、频域特性、时域特性等,能够全面描述每个IMF和残差项在不同尺度上的行为。

  • 通过MFE,算法能够捕捉到多变量时间序列中的局部和全局模式,为后续的预测模型提供更丰富、更有代表性的信息。

3. 支持向量机(SVM)

  • SVM是一种常用的监督学习算法,适用于处理分类和回归问题。在MVMD_MFE_SVM_LSTM算法中,SVM被用来初步预测每个IMF和残差项的未来值。

  • 利用历史数据和MFE提取的多尺度特征,SVM可以训练多个独立的预测模型,每个模型对应一个IMF或残差项。这些模型能够捕捉到数据中的非线性关系,并为后续的LSTM模型提供初始预测结果。

4. 长短期记忆神经网络(LSTM)

  • LSTM是一种特殊的循环神经网络(RNN),特别适合处理具有长期依赖关系的时间序列数据。在MVMD_MFE_SVM_LSTM算法中,LSTM用于进一步优化SVM的初步预测结果。

  • LSTM接收SVM的预测结果和MFE提取的多尺度特征作为输入,通过其内部的记忆单元和门控机制,学习到时间序列中的长期依赖关系。LSTM模型可以对每个IMF和残差项进行更精确的预测。

综上所述,MVMD_MFE_SVM_LSTM神经网络时序预测算法结合了多变量多尺度分解、多尺度特征提取、聚类后展开支持向量机和长短期记忆神经网络的优点,实现对多变量时间序列的高精度预测。这种算法在金融市场预测、气象预报、能源消耗预测等领域具有广泛的应用前景。然而,需要注意的是,该算法的计算复杂度较高,需要适当的优化和调整以适应不同的应用场景。

2 出图效果

附出图效果如下:

3 代码获取

代码见附件

相关推荐
源代码•宸10 分钟前
Leetcode—746. 使用最小花费爬楼梯【简单】
后端·算法·leetcode·职场和发展·golang·记忆化搜索·动规
南 阳11 分钟前
Python从入门到精通day16
开发语言·python·算法
沉默-_-15 分钟前
力扣hot100-子串(C++)
c++·学习·算法·leetcode·子串
Master_oid19 分钟前
机器学习30:神经网络压缩(Network Compression)①
人工智能·神经网络·机器学习
jiaguangqingpanda27 分钟前
Day29-20260125
java·数据结构·算法
沃达德软件29 分钟前
智能车辆检索系统解析
人工智能·深度学习·神经网络·目标检测·机器学习·计算机视觉·目标跟踪
POLITE334 分钟前
Leetcode 437. 路径总和 III (Day 16)JavaScript
javascript·算法·leetcode
June`36 分钟前
FloodFill算法:图像处理与游戏开发利器
算法·深度优先·floodfill
wWYy.39 分钟前
算法:四数相加||
算法
ytttr8731 小时前
基于MATLAB的三维装箱程序实现(遗传算法+模拟退火优化)
开发语言·matlab