【MATLAB】MVMD_ MFE_SVM_LSTM 神经网络时序预测算法

有意向获取代码,请转文末观看代码获取方式~也可转原文链接获取~

1 基本定义

MVMD_MFE_SVM_LSTM神经网络时序预测算法结合了多变量多尺度分解(MVMD)、多尺度特征提取(MFE)、支持向量机(SVM)和长短期记忆神经网络(LSTM)的方法,旨在实现对多变量时间序列的高精度预测。以下是关于该算法的详细介绍:

1. 多变量多尺度分解(MVMD)

  • MVMD是一种针对多变量时间序列的分解方法,它能够对多个时间序列同时进行经验模态分解。与单变量时间序列分解方法不同,MVMD能够考虑到多个时间序列之间的相互关系,提取出每个时间序列中的复杂模式和趋势。

  • 通过MVMD,多个时间序列被分解为一系列固有模式函数(IMF)和残差项。这些IMF和残差项代表了原始时间序列中的不同频率和尺度成分,为后续的特征提取和预测提供了基础。

2. 多尺度特征提取(MFE)

  • MFE技术用于从MVMD得到的IMF和残差项中提取多尺度特征。这些特征包括统计特性、频域特性、时域特性等,能够全面描述每个IMF和残差项在不同尺度上的行为。

  • 通过MFE,算法能够捕捉到多变量时间序列中的局部和全局模式,为后续的预测模型提供更丰富、更有代表性的信息。

3. 支持向量机(SVM)

  • SVM是一种常用的监督学习算法,适用于处理分类和回归问题。在MVMD_MFE_SVM_LSTM算法中,SVM被用来初步预测每个IMF和残差项的未来值。

  • 利用历史数据和MFE提取的多尺度特征,SVM可以训练多个独立的预测模型,每个模型对应一个IMF或残差项。这些模型能够捕捉到数据中的非线性关系,并为后续的LSTM模型提供初始预测结果。

4. 长短期记忆神经网络(LSTM)

  • LSTM是一种特殊的循环神经网络(RNN),特别适合处理具有长期依赖关系的时间序列数据。在MVMD_MFE_SVM_LSTM算法中,LSTM用于进一步优化SVM的初步预测结果。

  • LSTM接收SVM的预测结果和MFE提取的多尺度特征作为输入,通过其内部的记忆单元和门控机制,学习到时间序列中的长期依赖关系。LSTM模型可以对每个IMF和残差项进行更精确的预测。

综上所述,MVMD_MFE_SVM_LSTM神经网络时序预测算法结合了多变量多尺度分解、多尺度特征提取、聚类后展开支持向量机和长短期记忆神经网络的优点,实现对多变量时间序列的高精度预测。这种算法在金融市场预测、气象预报、能源消耗预测等领域具有广泛的应用前景。然而,需要注意的是,该算法的计算复杂度较高,需要适当的优化和调整以适应不同的应用场景。

2 出图效果

附出图效果如下:

3 代码获取

代码见附件

相关推荐
代码游侠1 小时前
日历的各种C语言实现方法
c语言·开发语言·学习·算法
春日见5 小时前
丝滑快速拓展随机树 S-RRT(Smoothly RRT)算法核心原理与完整流程
人工智能·算法·机器学习·路径规划算法·s-rrt
Code小翊5 小时前
”回调“高级
算法·青少年编程
云里雾里!5 小时前
力扣 977. 有序数组的平方:双指针法的优雅解法
算法·leetcode·职场和发展
一只侯子8 小时前
Face AE Tuning
图像处理·笔记·学习·算法·计算机视觉
jianqiang.xue8 小时前
别把 Scratch 当 “动画玩具”!图形化编程是算法思维的最佳启蒙
人工智能·算法·青少年编程·机器人·少儿编程
不许哈哈哈9 小时前
Python数据结构
数据结构·算法·排序算法
J***79399 小时前
后端在分布式系统中的数据分片
算法·哈希算法
sin_hielo11 小时前
leetcode 2872
数据结构·算法·leetcode
dragoooon3411 小时前
[优选算法专题八.分治-归并 ——NO.49 翻转对]
算法