贝叶斯优化双向门控循环单元BO-BIGRU时序预测的matlab实现【源代码】

贝叶斯优化双向门控循环单元简介:

贝叶斯优化双向门控循环单元(BO-BIGRU)是一种结合了贝叶斯优化和双向门控循环单元(BIGRU)的神经网络模型。BIGRU是一种改进的循环神经网络(RNN),它结合了双向循环神经网络(Bi-RNN)和门控循环单元(GRU)的特点,能够有效地捕捉输入序列中的长期依赖关系。

贝叶斯优化(Bayesian Optimization,BO)是一种用于优化黑盒函数的方法,它通过在搜索空间中动态地选择下一个样本点来逐步逼近全局最优解。在机器学习领域,BO常用于超参数优化和模型选择。

BO-BIGRU将贝叶斯优化与BIGRU相结合,旨在通过动态调整模型的超参数和架构来提高模型的性能。通过在训练过程中对超参数进行自适应调整,BO-BIGRU可以更好地适应不同数据集和任务的特点,提高模型的泛化能力和性能表现。

总之,BO-BIGRU是一种利用贝叶斯优化调整双向门控循环单元架构和超参数的神经网络模型,旨在提高模型的性能和泛化能力。
BIGRU网络的搭建:

c 复制代码
%%	构建BIGRU
	bigru = layerGraph();
	
	bigru = addLayers(bigru,[
	sequenceInputLayer(inputSize,"Name","input")
	gruLayer(numhidden_units,'OutputMode','sequence',"Name","gru1")
	concatenationLayer(1, 2, "Name", "cat1")
	fullyConnectedLayer(outputSize) %全连接层输出维度设置
	regressionLayer('name','out')]);
	
	bigru =addLayers(bigru,[
	FlipLayer("flip1")
	gruLayer(numhidden_units,'OutputMode',"sequence","Name","gru2")
	FlipLayer("flip2")]);
	
	bigru = connectLayers(bigru, "input", "flip1");
	bigru = connectLayers(bigru, "flip2", "cat1/in2");
	
	opts = trainingOptions('adam', ...
		'MaxEpochs',MaxEpochs, ...
		'GradientThreshold',1,...
		'ExecutionEnvironment','cpu',...
		'InitialLearnRate',InitialLearnRate, ...
		'L2Regularization', L2Regularization, ...
		'LearnRateSchedule','piecewise', ...
		'Verbose',true, ...
		'Plots','training-progress'... 
		);
		
	analyzeNetwork(bigru);

贝叶斯优化:

c 复制代码
%%  创建待优化函数
	ObjFcn = @BOFunction;

%%  贝叶斯优化参数范围
	optimVars = [
    optimizableVariable('NumOfUnits', [5, 30], 'Type', 'integer')
    optimizableVariable('InitialLearnRate', [0.0001, 0.1], 'Transform', 'log')
    optimizableVariable('L2Regularization', [1e-10, 1e-2], 'Transform', 'log')
    optimizableVariable('MaxEpochs', [100, 200], 'Type', 'integer')
    ];

%%  贝叶斯优化网络参数
	BayesObject = bayesopt(ObjFcn, optimVars, ...    % 优化函数,和参数范围
        'MaxTime', Inf, ...                      % 优化时间(不限制) 
        'IsObjectiveDeterministic', false, ...
        'MaxObjectiveEvaluations', 30, ...       % 最大迭代次数
        'Verbose', 1, ...                        % 显示优化过程
        'UseParallel', false);

网络结构:

训练进度:

优化过程:

训练集结果:

测试集结果:

评价指标:

完整代码:BO-BIGRU时序预测代码

相关推荐
乌旭39 分钟前
量子计算与GPU的异构加速:基于CUDA Quantum的混合编程实践
人工智能·pytorch·分布式·深度学习·ai·gpu算力·量子计算
deephub2 小时前
CLIMB自举框架:基于语义聚类的迭代数据混合优化及其在LLM预训练中的应用
人工智能·深度学习·大语言模型·聚类
算法如诗3 小时前
【数据融合】基于拓展卡尔曼滤波实现雷达与红外的异步融合附matlab代码
matlab·数据融合
契合qht53_shine5 小时前
深度学习 视觉处理(CNN) day_02
人工智能·深度学习·cnn
一点.点8 小时前
李沐动手深度学习(pycharm中运行笔记)——04.数据操作
pytorch·笔记·python·深度学习·pycharm·动手深度学习
Evand J10 小时前
MATLAB技巧——平滑滤波,给出一定的例程和输出参考
开发语言·matlab
青橘MATLAB学习10 小时前
深度学习中的预训练与微调:从基础概念到实战应用全解析
人工智能·深度学习·微调·迁移学习·预训练·梯度消失·模型复用
迪小莫学AI11 小时前
多模态深度学习: 从基础到实践
人工智能·深度学习
美狐美颜sdk12 小时前
动态贴纸+美颜SDK的融合实现:底层架构与性能优化技术全解析
人工智能·深度学习·美颜sdk·第三方美颜sdk·美颜api
神仙别闹13 小时前
基于Java(JSP)+MySQL实现深度学习的音乐推荐系统
java·深度学习·mysql