贝叶斯优化双向门控循环单元BO-BIGRU时序预测的matlab实现【源代码】

贝叶斯优化双向门控循环单元简介:

贝叶斯优化双向门控循环单元(BO-BIGRU)是一种结合了贝叶斯优化和双向门控循环单元(BIGRU)的神经网络模型。BIGRU是一种改进的循环神经网络(RNN),它结合了双向循环神经网络(Bi-RNN)和门控循环单元(GRU)的特点,能够有效地捕捉输入序列中的长期依赖关系。

贝叶斯优化(Bayesian Optimization,BO)是一种用于优化黑盒函数的方法,它通过在搜索空间中动态地选择下一个样本点来逐步逼近全局最优解。在机器学习领域,BO常用于超参数优化和模型选择。

BO-BIGRU将贝叶斯优化与BIGRU相结合,旨在通过动态调整模型的超参数和架构来提高模型的性能。通过在训练过程中对超参数进行自适应调整,BO-BIGRU可以更好地适应不同数据集和任务的特点,提高模型的泛化能力和性能表现。

总之,BO-BIGRU是一种利用贝叶斯优化调整双向门控循环单元架构和超参数的神经网络模型,旨在提高模型的性能和泛化能力。
BIGRU网络的搭建:

c 复制代码
%%	构建BIGRU
	bigru = layerGraph();
	
	bigru = addLayers(bigru,[
	sequenceInputLayer(inputSize,"Name","input")
	gruLayer(numhidden_units,'OutputMode','sequence',"Name","gru1")
	concatenationLayer(1, 2, "Name", "cat1")
	fullyConnectedLayer(outputSize) %全连接层输出维度设置
	regressionLayer('name','out')]);
	
	bigru =addLayers(bigru,[
	FlipLayer("flip1")
	gruLayer(numhidden_units,'OutputMode',"sequence","Name","gru2")
	FlipLayer("flip2")]);
	
	bigru = connectLayers(bigru, "input", "flip1");
	bigru = connectLayers(bigru, "flip2", "cat1/in2");
	
	opts = trainingOptions('adam', ...
		'MaxEpochs',MaxEpochs, ...
		'GradientThreshold',1,...
		'ExecutionEnvironment','cpu',...
		'InitialLearnRate',InitialLearnRate, ...
		'L2Regularization', L2Regularization, ...
		'LearnRateSchedule','piecewise', ...
		'Verbose',true, ...
		'Plots','training-progress'... 
		);
		
	analyzeNetwork(bigru);

贝叶斯优化:

c 复制代码
%%  创建待优化函数
	ObjFcn = @BOFunction;

%%  贝叶斯优化参数范围
	optimVars = [
    optimizableVariable('NumOfUnits', [5, 30], 'Type', 'integer')
    optimizableVariable('InitialLearnRate', [0.0001, 0.1], 'Transform', 'log')
    optimizableVariable('L2Regularization', [1e-10, 1e-2], 'Transform', 'log')
    optimizableVariable('MaxEpochs', [100, 200], 'Type', 'integer')
    ];

%%  贝叶斯优化网络参数
	BayesObject = bayesopt(ObjFcn, optimVars, ...    % 优化函数,和参数范围
        'MaxTime', Inf, ...                      % 优化时间(不限制) 
        'IsObjectiveDeterministic', false, ...
        'MaxObjectiveEvaluations', 30, ...       % 最大迭代次数
        'Verbose', 1, ...                        % 显示优化过程
        'UseParallel', false);

网络结构:

训练进度:

优化过程:

训练集结果:

测试集结果:

评价指标:

完整代码:BO-BIGRU时序预测代码

相关推荐
cyyt17 分钟前
深度学习周报(25.12.29~26.1.4)
人工智能·深度学习
万俟淋曦23 分钟前
【论文速递】2025年第51周(Dec-14-20)(Robotics/Embodied AI/LLM)
人工智能·深度学习·机器人·大模型·论文·robotics·具身智能
汗流浃背了吧,老弟!24 分钟前
基于 BERT 的指令微调
人工智能·深度学习·bert
LDG_AGI1 小时前
【推荐系统】深度学习训练框架(二十二):PyTorch2.5 + TorchRec1.0超大规模模型分布式推理实战
人工智能·分布式·深度学习
DP+GISer1 小时前
02基于pytorch的深度学习遥感地物分类全流程实战教程(包含遥感深度学习数据集制作与大图预测)-实践篇-python基础与遥感深度学习境配置
人工智能·pytorch·python·深度学习·图像分割·遥感·地物分类
万俟淋曦1 小时前
【论文速递】2025年第49周(Nov-30-Dec-06)(Robotics/Embodied AI/LLM)
人工智能·深度学习·机器学习·机器人·大模型·论文·具身智能
Evand J1 小时前
MATLAB例程【二维,UKF,速度滤波】DVL与IMU的融合例程,模拟速度和惯导的融合,适用于二维平面、非线性的运动轨迹
开发语言·matlab·滤波·定位
byzh_rc1 小时前
[机器学习-从入门到入土] 模型评估与选择
人工智能·深度学习·机器学习
haiyu_y1 小时前
Day 55 序列预测任务详解
人工智能·pytorch·深度学习
fie88891 小时前
基于MATLAB的3D心形图与玫瑰花图案实现
数学建模·matlab·3d