贝叶斯优化双向门控循环单元BO-BIGRU时序预测的matlab实现【源代码】

贝叶斯优化双向门控循环单元简介:

贝叶斯优化双向门控循环单元(BO-BIGRU)是一种结合了贝叶斯优化和双向门控循环单元(BIGRU)的神经网络模型。BIGRU是一种改进的循环神经网络(RNN),它结合了双向循环神经网络(Bi-RNN)和门控循环单元(GRU)的特点,能够有效地捕捉输入序列中的长期依赖关系。

贝叶斯优化(Bayesian Optimization,BO)是一种用于优化黑盒函数的方法,它通过在搜索空间中动态地选择下一个样本点来逐步逼近全局最优解。在机器学习领域,BO常用于超参数优化和模型选择。

BO-BIGRU将贝叶斯优化与BIGRU相结合,旨在通过动态调整模型的超参数和架构来提高模型的性能。通过在训练过程中对超参数进行自适应调整,BO-BIGRU可以更好地适应不同数据集和任务的特点,提高模型的泛化能力和性能表现。

总之,BO-BIGRU是一种利用贝叶斯优化调整双向门控循环单元架构和超参数的神经网络模型,旨在提高模型的性能和泛化能力。
BIGRU网络的搭建:

c 复制代码
%%	构建BIGRU
	bigru = layerGraph();
	
	bigru = addLayers(bigru,[
	sequenceInputLayer(inputSize,"Name","input")
	gruLayer(numhidden_units,'OutputMode','sequence',"Name","gru1")
	concatenationLayer(1, 2, "Name", "cat1")
	fullyConnectedLayer(outputSize) %全连接层输出维度设置
	regressionLayer('name','out')]);
	
	bigru =addLayers(bigru,[
	FlipLayer("flip1")
	gruLayer(numhidden_units,'OutputMode',"sequence","Name","gru2")
	FlipLayer("flip2")]);
	
	bigru = connectLayers(bigru, "input", "flip1");
	bigru = connectLayers(bigru, "flip2", "cat1/in2");
	
	opts = trainingOptions('adam', ...
		'MaxEpochs',MaxEpochs, ...
		'GradientThreshold',1,...
		'ExecutionEnvironment','cpu',...
		'InitialLearnRate',InitialLearnRate, ...
		'L2Regularization', L2Regularization, ...
		'LearnRateSchedule','piecewise', ...
		'Verbose',true, ...
		'Plots','training-progress'... 
		);
		
	analyzeNetwork(bigru);

贝叶斯优化:

c 复制代码
%%  创建待优化函数
	ObjFcn = @BOFunction;

%%  贝叶斯优化参数范围
	optimVars = [
    optimizableVariable('NumOfUnits', [5, 30], 'Type', 'integer')
    optimizableVariable('InitialLearnRate', [0.0001, 0.1], 'Transform', 'log')
    optimizableVariable('L2Regularization', [1e-10, 1e-2], 'Transform', 'log')
    optimizableVariable('MaxEpochs', [100, 200], 'Type', 'integer')
    ];

%%  贝叶斯优化网络参数
	BayesObject = bayesopt(ObjFcn, optimVars, ...    % 优化函数,和参数范围
        'MaxTime', Inf, ...                      % 优化时间(不限制) 
        'IsObjectiveDeterministic', false, ...
        'MaxObjectiveEvaluations', 30, ...       % 最大迭代次数
        'Verbose', 1, ...                        % 显示优化过程
        'UseParallel', false);

网络结构:

训练进度:

优化过程:

训练集结果:

测试集结果:

评价指标:

完整代码:BO-BIGRU时序预测代码

相关推荐
SHIPKING3931 小时前
【机器学习&深度学习】什么是下游任务模型?
人工智能·深度学习·机器学习
m0_555762906 小时前
Matlab 频谱分析 (Spectral Analysis)
开发语言·matlab
伍哥的传说6 小时前
React 各颜色转换方法、颜色值换算工具HEX、RGB/RGBA、HSL/HSLA、HSV、CMYK
深度学习·神经网络·react.js
要努力啊啊啊8 小时前
YOLOv3-SPP Auto-Anchor 聚类调试指南!
人工智能·深度学习·yolo·目标检测·目标跟踪·数据挖掘
**梯度已爆炸**9 小时前
NLP文本预处理
人工智能·深度学习·nlp
汀沿河10 小时前
2 大模型高效参数微调;prompt tunning
人工智能·深度学习·prompt
guygg8811 小时前
基于matlab的FIR滤波器
开发语言·算法·matlab
Blossom.11812 小时前
机器学习在智能制造业中的应用:质量检测与设备故障预测
人工智能·深度学习·神经网络·机器学习·机器人·tensorflow·sklearn
烟锁池塘柳013 小时前
【深度学习】强化学习(Reinforcement Learning, RL)主流架构解析
人工智能·深度学习·机器学习
Ronin-Lotus14 小时前
深度学习篇---Yolov系列
人工智能·深度学习