贝叶斯优化双向门控循环单元BO-BIGRU时序预测的matlab实现【源代码】

贝叶斯优化双向门控循环单元简介:

贝叶斯优化双向门控循环单元(BO-BIGRU)是一种结合了贝叶斯优化和双向门控循环单元(BIGRU)的神经网络模型。BIGRU是一种改进的循环神经网络(RNN),它结合了双向循环神经网络(Bi-RNN)和门控循环单元(GRU)的特点,能够有效地捕捉输入序列中的长期依赖关系。

贝叶斯优化(Bayesian Optimization,BO)是一种用于优化黑盒函数的方法,它通过在搜索空间中动态地选择下一个样本点来逐步逼近全局最优解。在机器学习领域,BO常用于超参数优化和模型选择。

BO-BIGRU将贝叶斯优化与BIGRU相结合,旨在通过动态调整模型的超参数和架构来提高模型的性能。通过在训练过程中对超参数进行自适应调整,BO-BIGRU可以更好地适应不同数据集和任务的特点,提高模型的泛化能力和性能表现。

总之,BO-BIGRU是一种利用贝叶斯优化调整双向门控循环单元架构和超参数的神经网络模型,旨在提高模型的性能和泛化能力。
BIGRU网络的搭建:

c 复制代码
%%	构建BIGRU
	bigru = layerGraph();
	
	bigru = addLayers(bigru,[
	sequenceInputLayer(inputSize,"Name","input")
	gruLayer(numhidden_units,'OutputMode','sequence',"Name","gru1")
	concatenationLayer(1, 2, "Name", "cat1")
	fullyConnectedLayer(outputSize) %全连接层输出维度设置
	regressionLayer('name','out')]);
	
	bigru =addLayers(bigru,[
	FlipLayer("flip1")
	gruLayer(numhidden_units,'OutputMode',"sequence","Name","gru2")
	FlipLayer("flip2")]);
	
	bigru = connectLayers(bigru, "input", "flip1");
	bigru = connectLayers(bigru, "flip2", "cat1/in2");
	
	opts = trainingOptions('adam', ...
		'MaxEpochs',MaxEpochs, ...
		'GradientThreshold',1,...
		'ExecutionEnvironment','cpu',...
		'InitialLearnRate',InitialLearnRate, ...
		'L2Regularization', L2Regularization, ...
		'LearnRateSchedule','piecewise', ...
		'Verbose',true, ...
		'Plots','training-progress'... 
		);
		
	analyzeNetwork(bigru);

贝叶斯优化:

c 复制代码
%%  创建待优化函数
	ObjFcn = @BOFunction;

%%  贝叶斯优化参数范围
	optimVars = [
    optimizableVariable('NumOfUnits', [5, 30], 'Type', 'integer')
    optimizableVariable('InitialLearnRate', [0.0001, 0.1], 'Transform', 'log')
    optimizableVariable('L2Regularization', [1e-10, 1e-2], 'Transform', 'log')
    optimizableVariable('MaxEpochs', [100, 200], 'Type', 'integer')
    ];

%%  贝叶斯优化网络参数
	BayesObject = bayesopt(ObjFcn, optimVars, ...    % 优化函数,和参数范围
        'MaxTime', Inf, ...                      % 优化时间(不限制) 
        'IsObjectiveDeterministic', false, ...
        'MaxObjectiveEvaluations', 30, ...       % 最大迭代次数
        'Verbose', 1, ...                        % 显示优化过程
        'UseParallel', false);

网络结构:

训练进度:

优化过程:

训练集结果:

测试集结果:

评价指标:

完整代码:BO-BIGRU时序预测代码

相关推荐
CoovallyAIHub15 小时前
中科大DSAI Lab团队多篇论文入选ICCV 2025,推动三维视觉与泛化感知技术突破
深度学习·算法·计算机视觉
CoovallyAIHub16 小时前
开源的消逝与新生:从 TensorFlow 的落幕到开源生态的蜕变
pytorch·深度学习·llm
CoovallyAIHub21 小时前
港大&字节重磅发布DanceGRPO:突破视觉生成RLHF瓶颈,多项任务性能提升超180%!
深度学习·算法·计算机视觉
CoovallyAIHub1 天前
英伟达ViPE重磅发布!解决3D感知难题,SLAM+深度学习完美融合(附带数据集下载地址)
深度学习·算法·计算机视觉
惯导马工2 天前
【论文导读】ORB-SLAM3:An Accurate Open-Source Library for Visual, Visual-Inertial and
深度学习·算法
隐语SecretFlow3 天前
国人自研开源隐私计算框架SecretFlow,深度拆解框架及使用【开发者必看】
深度学习
Billy_Zuo3 天前
人工智能深度学习——卷积神经网络(CNN)
人工智能·深度学习·cnn
羊羊小栈3 天前
基于「YOLO目标检测 + 多模态AI分析」的遥感影像目标检测分析系统(vue+flask+数据集+模型训练)
人工智能·深度学习·yolo·目标检测·毕业设计·大作业
l12345sy3 天前
Day24_【深度学习—广播机制】
人工智能·pytorch·深度学习·广播机制
九章云极AladdinEdu3 天前
超参数自动化调优指南:Optuna vs. Ray Tune 对比评测
运维·人工智能·深度学习·ai·自动化·gpu算力