大数据分布式计算工具Spark实战讲解(数据输入实战)

Python数据容器转RDD对象

PySpark支持通过SparkContext对象的parallelize成员方法,将:

  • list

  • tuple

  • set

  • dict

  • str

转换为PySpark的RDD对象

注意:

•字符串会被拆分出1个个的字符,存入RDD对象

•字典仅有key会被存入RDD对象

python 复制代码
from pyspark import SparkConf, SparkContext

#创建一个sparkconf类对象
conf = SparkConf().setMaster("local[*]").setAppName("test_spark_app")

#基于sparkconf类对象创建sparkcontext类对象
sc = SparkContext(conf=conf)

#通过parallelize方法将python对象加载到spark内,成为rdd对象
rdd1 = sc.parallelize([1,2,3,4,5])
rdd2 = sc.parallelize((1,2,3,4,5,6))
rdd3 = sc.parallelize("absdad")
rdd4 = sc.parallelize({1,2,3,4,5})
rdd5 = sc.parallelize({"key1":"value1"})

#如果要查看rdd里面有什么内容,需要用collect()方法
print(rdd1.collect())
print(rdd2.collect())
print(rdd3.collect())
print(rdd4.collect())
print(rdd5.collect())

sc.stop()
#通过textfile方法,读取文件数据加载到spark内,成为rdd对象
[1, 2, 3, 4, 5]
[1, 2, 3, 4, 5, 6]
['a', 'b', 's', 'd', 'a', 'd']
[1, 2, 3, 4, 5]
['key1']

读取文件转RDD对象

PySpark也支持通过SparkContext入口对象,来读取文件,来构建出RDD对象。

python 复制代码
from pyspark import SparkConf, SparkContext

#创建一个sparkconf类对象
conf = SparkConf().setMaster("local[*]").setAppName("test_spark_app")

#基于sparkconf类对象创建sparkcontext类对象
sc = SparkContext(conf=conf)

rdd = sc.textFile("D:/hello.txt")

print(rdd.collect())

sc.stop()
#['qweeqweqweqe']
相关推荐
Lx3523 小时前
Hadoop容错机制深度解析:保障作业稳定运行
大数据·hadoop
Aomnitrix7 小时前
知识管理新范式——cpolar+Wiki.js打造企业级分布式知识库
开发语言·javascript·分布式
程序消消乐7 小时前
Kafka 入门指南:从 0 到 1 构建你的 Kafka 知识基础入门体系
分布式·kafka
智能化咨询7 小时前
Kafka架构:构建高吞吐量分布式消息系统的艺术——进阶优化与行业实践
分布式·架构·kafka
Chasing__Dreams7 小时前
kafka--基础知识点--5.2--最多一次、至少一次、精确一次
分布式·kafka
计算机毕业设计木哥7 小时前
计算机毕设选题推荐:基于Java+SpringBoot物品租赁管理系统【源码+文档+调试】
java·vue.js·spring boot·mysql·spark·毕业设计·课程设计
T06205147 小时前
工具变量-5G试点城市DID数据(2014-2025年
大数据
向往鹰的翱翔8 小时前
BKY莱德因:5大黑科技逆转时光
大数据·人工智能·科技·生活·健康医疗
鸿乃江边鸟9 小时前
向量化和列式存储
大数据·sql·向量化