基于神经网络的偏微分方程求解器新突破:北大&字节研究成果入选Nature子刊

近年来,基于神经网络的偏微分方程求解器在各领域均得到了广泛关注。其中,量子变分蒙特卡洛方法(NNVMC)在量子化学领域异军突起,对于一系列问题的解决展现出超越传统方法的精确度 [1, 2, 3, 4]。北京大学与字节跳动研究部门 ByteDance Research 联合开发的计算框架 Forward Laplacian 创新地利用 Laplace 算子前向传播计算,为 NNVMC 领域提供了十倍的加速,从而大幅降低计算成本,达成该领域多项 State of the Art,同时也助力该领域向更多的科学难题发起冲击。该工作以《A computational framework for neural network-based variational Monte Carlo with Forward Laplacian》为题的论文已发表于国际顶级期刊《Nature Machine Intelligence》,相关代码已开源。

该项工作一提出即受到相关研究人员的密切关注,围绕该工作已有多个开源项目实现,编程框架 JAX 也计划将该项工作吸收其中。

该项工作由北京大学智能学院王立威课题组、物理学院陈基课题组联合字节跳动研究部门 ByteDance Research 一同开发完成,作者中有多位北京大学博士生在 ByteDance Research 实习。

背景简介

基于神经网络的量子变分蒙特卡洛方法(NNVMC)已成为量子化学 - 从头计算领域中一项前沿技术。它具备精度高、适用范围广等优点。但它的阿克琉斯之踵在于过高的计算成本,这也限制了该方法在实际化学问题中的应用。

作者提出了一套全新的计算框架 "Forward Laplacian",利用 Laplace 算子的前向传播,显著提升了 NNVMC 方法的计算效率,为人工智能在微观量子问题中的应用打开了新的大门。

方法介绍

Forward Laplacian 框架

在 NNVMC 方法中,神经网络的目标函数是微观体系的能量,包括动能与势能两项。其中动能项涉及对神经网络的拉普拉斯算子的计算,这也是 NNVMC 中耗时最长的计算瓶颈。现有的自动微分框架在计算拉普拉斯算子时,需要先计算黑塞矩阵,再求得拉普拉斯项(即黑塞矩阵的迹)。而作者所提出的计算框架 "Forward Laplacian" 则通过一次前向传播直接求得拉普拉斯项,避免了黑塞矩阵的计算,从而削减了整体计算的规模,实现了显著加速。

LapNet 网络

除了有效削减计算图规模之外,Forward Laplacian 框架的另一大特点是能有效利用神经网络梯度计算中的稀疏性,提出神经网络结构 LapNet。LapNet 通过增加神经网络中的稀疏性,在精度无损的同时,显著提升了网络计算的效率。

计算结果

绝对能量

作者首先就方法的效率及精度同当前 NNVMC 领域有代表性的几项工作进行了比较。从绝对能量的计算结果而言,作者提出的 LapNet 在 Forward Laplacian 框架下的效率高于参考工作数倍,精度上也与 SOTA 保持一致。此外,如果在相同计算资源(即相同 GPU hour)的情况下比较,LapNet 的计算结果可以显著优于之前的 SOTA。

加速标度

为了更明确地研究作者所提出方法相比于之前 SOTA 的加速标度,作者在不同大小的链式聚乙烯体系上进行了测试,结果可以很明显地看到 Forward Laplacian 工作带来的 O (n) 加速。此处 n 为目标分子中的电子数目。

相对能量

在物理、化学研究中,相对能量相较于绝对能量具有更明确的物理意义。作者也在一系列的体系上进行了测试,均取得了理想结果。

总结

为降低基于神经网络的量子变分蒙特卡洛方法(NNVMC)的使用门槛,北京大学与字节跳动研究部门 ByteDance Research 联合开发了计算框架 Forward Laplacian,实现了十倍的加速。该工作已受到相关研究人员的广泛关注,期望能够推动 NNVMC 方法在更多科学问题中发挥重要作用。

参考文献

1\] Han, J., Zhang, L., \& Weinan, E. (2019). Solving many-electron Schrödinger equation using deep neural networks. Journal of Computational Physics, 399, 108929. \[2\] Hermann, J., Schätzle, Z., \& Noé, F. (2020). Deep-neural-network solution of the electronic Schrödinger equation. Nature Chemistry, 12 (10), 891-897. \[3\] Pfau, D., Spencer, J. S., Matthews, A. G., \& Foulkes, W. M. C. (2020). Ab initio solution of the many-electron Schrödinger equation with deep neural networks. Physical Review Research, 2 (3), 033429. \[4\] Li, X., Li, Z., \& Chen, J. (2022). Ab initio calculation of real solids via neural network ansatz. Nature Communications, 13 (1), 7895.

相关推荐
white-persist21 分钟前
MCP协议深度解析:AI时代的通用连接器
网络·人工智能·windows·爬虫·python·自动化
新智元22 分钟前
谷歌杀入诺奖神殿,两年三冠五得主!世界TOP3重现贝尔实验室神话
人工智能·openai
StarPrayers.25 分钟前
卷积层(Convolutional Layer)学习笔记
人工智能·笔记·深度学习·学习·机器学习
skywalk816327 分钟前
AutoCoder Nano 是一款轻量级的编码助手, 利用大型语言模型(LLMs)帮助开发者编写, 理解和修改代码。
人工智能
金井PRATHAMA34 分钟前
描述逻辑对人工智能自然语言处理中深层语义分析的影响与启示
人工智能·自然语言处理·知识图谱
却道天凉_好个秋39 分钟前
OpenCV(四):视频采集与保存
人工智能·opencv·音视频
minhuan40 分钟前
构建AI智能体:五十七、LangGraph + Gradio:构建可视化AI工作流的趣味指南
人工智能·语言模型·workflow·langgraph·自定义工作流
WWZZ20251 小时前
ORB_SLAM2原理及代码解析:SetPose() 函数
人工智能·opencv·算法·计算机视觉·机器人·自动驾驶
lisw051 小时前
AIoT(人工智能物联网):融合范式下的技术演进、系统架构与产业变革
大数据·人工智能·物联网·机器学习·软件工程