激活函数往往是神经网络的最后一层吗

在神经网络中,激活函数通常不仅仅是在最后一层使用,而是在每一层的神经元之间使用 。激活函数的作用是引入非线性变换,使得神经网络能够学习和表示更加复杂的函数关系

在神经网络的隐藏层中,激活函数常常被应用于每个神经元的输出,将输入信号进行非线性映射。这有助于模型学习非线性模式和特征,并提高网络的表示能力。常见的激活函数包括ReLU、Sigmoid、Tanh等。

在输出层中,激活函数的选择取决于任务的性质。对于二分类任务,通常使用Sigmoid函数作为激活函数,将输出限制在0到1之间,表示概率值。对于多分类任务,常用的激活函数是Softmax函数,将输出转换为每个类别的概率分布。

需要注意的是,有些特殊的网络结构或任务可能不使用激活函数,例如在一些回归任务中,输出层可能直接输出实数值而不经过激活函数。此外,一些特殊的网络结构,如生成对抗网络(GANs)中的生成器部分,也可能使用特定的激活函数,如LeakyReLU。

总结来说,激活函数在神经网络中被广泛应用于隐藏层,用于引入非线性变换。在输出层,激活函数的选择取决于任务的性质,可以是Sigmoid、Softmax等。

相关推荐
聚客AI2 小时前
🌟大模型为什么产生幻觉?预训练到推理的漏洞全揭秘
人工智能·llm·掘金·日新计划
Juchecar2 小时前
一文讲清 nn.Sequential 等容器类
人工智能
阿里云云原生2 小时前
如何快速看懂「祖传项目」?Qoder 强势推出新利器
人工智能
美团技术团队2 小时前
LongCat-Flash:如何使用 SGLang 部署美团 Agentic 模型
人工智能·算法
程序员小袁4 小时前
基于C-MTEB/CMedQAv2-rerankingv的Qwen3-1.7b模型微调-demo
人工智能
飞哥数智坊5 小时前
AI 编程一年多,我终于明白:比技巧更重要的,是熟练度
人工智能·ai编程
新智元5 小时前
收手吧 GPT-5-Codex,外面全是 AI 编程智能体!
人工智能·openai
IT_陈寒5 小时前
Java 性能优化:5个被低估的JVM参数让你的应用吞吐量提升50%
前端·人工智能·后端
阿里云云原生6 小时前
阿里云基础设施 AI Tech Day AI 原生,智构未来——AI 原生架构与企业实践专场
人工智能
Memene摸鱼日报7 小时前
「Memene 摸鱼日报 2025.9.16」OpenAI 推出 GPT-5-Codex 编程模型,xAI 发布 Grok 4 Fast
人工智能·aigc