激活函数往往是神经网络的最后一层吗

在神经网络中,激活函数通常不仅仅是在最后一层使用,而是在每一层的神经元之间使用 。激活函数的作用是引入非线性变换,使得神经网络能够学习和表示更加复杂的函数关系

在神经网络的隐藏层中,激活函数常常被应用于每个神经元的输出,将输入信号进行非线性映射。这有助于模型学习非线性模式和特征,并提高网络的表示能力。常见的激活函数包括ReLU、Sigmoid、Tanh等。

在输出层中,激活函数的选择取决于任务的性质。对于二分类任务,通常使用Sigmoid函数作为激活函数,将输出限制在0到1之间,表示概率值。对于多分类任务,常用的激活函数是Softmax函数,将输出转换为每个类别的概率分布。

需要注意的是,有些特殊的网络结构或任务可能不使用激活函数,例如在一些回归任务中,输出层可能直接输出实数值而不经过激活函数。此外,一些特殊的网络结构,如生成对抗网络(GANs)中的生成器部分,也可能使用特定的激活函数,如LeakyReLU。

总结来说,激活函数在神经网络中被广泛应用于隐藏层,用于引入非线性变换。在输出层,激活函数的选择取决于任务的性质,可以是Sigmoid、Softmax等。

相关推荐
Dev7z2 分钟前
河南特色农产品识别系统:让AI守护“中原味道”
人工智能
万俟淋曦8 分钟前
【论文速递】2025年第28周(Jul-06-12)(Robotics/Embodied AI/LLM)
人工智能·ai·机器人·大模型·论文·robotics·具身智能
我是李武涯17 分钟前
PyTorch DataLoader 高级用法
人工智能·pytorch·python
每月一号准时摆烂17 分钟前
PS基本教学(三)——像素与分辨率的关系以及图片的格式
人工智能·计算机视觉
song1502653729836 分钟前
全自动视觉检测设备
人工智能·计算机视觉·视觉检测
2501_9065196737 分钟前
大语言模型的幻觉问题:机理、评估与抑制路径探析
人工智能
ZKNOW甄知科技1 小时前
客户案例 | 派克新材x甄知科技,构建全场景智能IT运维体系
大数据·运维·人工智能·科技·低代码·微服务·制造
视觉语言导航1 小时前
CoRL-2025 | SocialNav-SUB:用于社交机器人导航场景理解的视觉语言模型基准测试
人工智能·机器人·具身智能
余俊晖2 小时前
多模态文档理解视觉token剪枝思路
人工智能·算法·剪枝·多模态
一RTOS一2 小时前
从操作系统到具身智能,东土科技正加速构建自主可控产业链
人工智能·科技·鸿道intewell·鸿道操作系统·鸿道实时操作系统·国产嵌入式操作系统选型