激活函数往往是神经网络的最后一层吗

在神经网络中,激活函数通常不仅仅是在最后一层使用,而是在每一层的神经元之间使用 。激活函数的作用是引入非线性变换,使得神经网络能够学习和表示更加复杂的函数关系

在神经网络的隐藏层中,激活函数常常被应用于每个神经元的输出,将输入信号进行非线性映射。这有助于模型学习非线性模式和特征,并提高网络的表示能力。常见的激活函数包括ReLU、Sigmoid、Tanh等。

在输出层中,激活函数的选择取决于任务的性质。对于二分类任务,通常使用Sigmoid函数作为激活函数,将输出限制在0到1之间,表示概率值。对于多分类任务,常用的激活函数是Softmax函数,将输出转换为每个类别的概率分布。

需要注意的是,有些特殊的网络结构或任务可能不使用激活函数,例如在一些回归任务中,输出层可能直接输出实数值而不经过激活函数。此外,一些特殊的网络结构,如生成对抗网络(GANs)中的生成器部分,也可能使用特定的激活函数,如LeakyReLU。

总结来说,激活函数在神经网络中被广泛应用于隐藏层,用于引入非线性变换。在输出层,激活函数的选择取决于任务的性质,可以是Sigmoid、Softmax等。

相关推荐
臭东西的学习笔记1 小时前
论文学习——机器学习引导的蛋白质工程
人工智能·学习·机器学习
大王小生1 小时前
说说CSV文件和C#解析csv文件的几种方式
人工智能·c#·csv·csvhelper·csvreader
m0_462605221 小时前
第G3周:CGAN入门|生成手势图像
人工智能
bubiyoushang8882 小时前
基于LSTM神经网络的短期风速预测实现方案
人工智能·神经网络·lstm
中烟创新2 小时前
烟草专卖文书生成智能体与法规案卷评查智能体获评“年度技术最佳实践奖”
人工智能
得一录2 小时前
大模型中的多模态知识
人工智能·aigc
Github掘金计划2 小时前
Claude Work 开源平替来了:让 AI 代理从“终端命令“变成“产品体验“
人工智能·开源
ghgxm5202 小时前
Fastapi_00_学习方向 ——无编程基础如何用AI实现APP生成
人工智能·学习·fastapi
就这个丶调调3 小时前
VLLM部署全部参数详解及其作用说明
深度学习·模型部署·vllm·参数配置
余俊晖3 小时前
3秒实现语音克隆的Qwen3-TTS的Qwen-TTS-Tokenizer和方法架构概览
人工智能·语音识别