机器学习|决策树

左图的点是一种线性不可分的情况,无法拿一条直线去将进行分开。

每一个节点都代表一个决策,从而导致节点的分流。

最终的目标肯定是要达到分类。

但取得目标的过程是有所谓的好坏。

而这个好坏用熵/信息增益来衡量。

熵是一种用于反映系统混乱程度的物理量。

信息增益用于反映新系统和旧系统的熵差。

熵的差值越大,说明这个分法能够导致系统更加稳定,效果更好。

相关推荐
HuggingFace13 分钟前
Hugging Face 开源机器人 Reachy Mini 开启预定
人工智能
企企通采购云平台1 小时前
「天元宠物」×企企通,加速数智化升级,“链”接萌宠消费新蓝海
大数据·人工智能·宠物
超级小忍1 小时前
Spring AI ETL Pipeline使用指南
人工智能·spring
张较瘦_1 小时前
[论文阅读] 人工智能 | 读懂Meta-Fair:让LLM摆脱偏见的自动化测试新方法
论文阅读·人工智能
巴伦是只猫2 小时前
【机器学习笔记 Ⅲ】4 特征选择
人工智能·笔记·机器学习
好心的小明2 小时前
【王树森推荐系统】召回11:地理位置召回、作者召回、缓存召回
人工智能·缓存·推荐系统·推荐算法
lishaoan773 小时前
使用tensorflow的线性回归的例子(十二)
人工智能·tensorflow·线性回归·戴明回归
Danceful_YJ3 小时前
4.权重衰减(weight decay)
python·深度学习·机器学习
二DUAN帝3 小时前
UE实现路径回放、自动驾驶功能简记
人工智能·websocket·机器学习·ue5·自动驾驶·ue4·cesiumforue
zskj_zhyl4 小时前
AI健康小屋“15分钟服务圈”:如何重构社区健康生态?
大数据·人工智能·物联网