基于yolov8的半自动标注

一、前言介绍

在深度学习领域中,标注是一项非常重要的工作,因为许多深度学习模型都依赖于有标注的数据进行训练。然而,标注数据是一个费时费力的工作,因此人们希望有一种方式来对标注过程进行自动化。这就是"半自动标注"的来源。半自动标注是一种折中的方式,它结合了人类的判断能力和计算机的自动化能力。

在一个半自动标注的系统中,步骤如下:

1、初始的标注工作通常由人类来做;

2、这些被标注的数据被用来训练一个深度学习模型,使模型能做出预测并自动标注新的数据。

3、但模型预测出的标注可能会有误,所以仍然需要人类进行审核和校正。

二、功能实现

1.数据集拆分

考虑到初始标注的数据集能有效兼顾,需要对全部数据集随机拆分,这样有助于有助于确保初始的标注数据集能代表整体数据集的特性。

例如:如果有1万个数据样本,可以使用的一种策略是使用10-20%的数据作为初始标注数据,也就是1000-2000个样本。这样可以得到一个相当大的初始标注数据集,可以提供足够的信息来训练模型。

import os
import shutil
import random

# 指定源文件夹路径
source_folder = "your_source_folder"  # 替换为你的源文件夹路径

# 指定目标文件夹路径
dest_folders = ["your_dest_folder1", "your_dest_folder2", "your_dest_folder3", "your_dest_folder4", "your_dest_folder5"]  # 替换为你的目标文件夹路径列表

# 如果目标文件夹不存在,创建它们
for folder in dest_folders:
    if not os.path.exists(folder):
        os.makedirs(folder)

# 获取源文件夹中的所有jpg文件
jpg_files = [f for f in os.listdir(source_folder) if f.endswith(".jpg")]

# 随机打乱jpg文件列表
random.shuffle(jpg_files)

# 均分文件到五个文件夹
split_files = [jpg_files[i::5] for i in range(5)]

# 将文件复制到对应的目标文件夹
for i in range(5):
    for file in split_files[i]:
        shutil.copy2(os.path.join(source_folder, file), dest_folders[i])

2.标注初始数据集

从第一部分拆分的五个子数据集中,选择第一个进行数据集标注。

标注软件labelImg

labelImg 图像文件路径 标注的类别txt文件路径

label的文件夹要放classes.txt(存放标注的类别)

3.yolov8训练,预测并自动标注新的数据

强调点:

  • 要去掉无标签值的image[初始数据集中要删除无label的image,免得影响模型的效果(也会将无标签的图片作为训练图片)]

3.1 标注文件的整理

对第二部分标注的初始数据集,txt文件和image文件是放在一起,删除内容为空的txt文件。再删除无txt文件的image文件

import os

# 指定目录
directory = '/path/to/directory'

txt_files = [f for f in os.listdir(directory) if f.endswith('.txt')]
jpg_files = [f for f in os.listdir(directory) if f.endswith('.jpg')]

# 检查文本文件,如果文件为空就删除
for filename in txt_files:
    filepath = os.path.join(directory, filename)
    
    # 判断文件是否为空
    if os.path.getsize(filepath) == 0:
        os.remove(filepath)
        print(f'{filename} is empty and has been removed.')
        txt_files.remove(filename)  # 从文本文件列表中移除已删除的文件

# 基于存在的文本文件,如果对应的jpg文件存在,但txt文件不存在,则删除jpg文件
for filename in jpg_files:
    txt_filename = filename.replace('.jpg', '.txt')
    
    if txt_filename not in txt_files:    # 在此判断txt文件是否存在
        jpg_filepath = os.path.join(directory, filename)
        
        os.remove(jpg_filepath)
        print(f'{filename} has been removed because its corresponding txt file does not exist.')

3.2 将原图和标签按照yolo的数据集路径格式进行存放

dataset
       ├─ images
       │    ├─ test # 存放测试集数据(可无)
       │    ├─ train # 存放训练集数据
       │    └─ val # 存放验证集数据
       └─ labels
              ├─ test # 存放测试集标签(可无)
              ├─ train # 存放训练集标签
              ├─ val # 存放验证集标签

3.3 训练与预测的代码

from ultralytics import YOLO
# 目标检测
# # 加载模型
model = YOLO("yolov8n.pt")  # 加载预训练权重
# model = YOLO("ultralytics/cfg/models/v8/yolov8n.yaml")  # 配置文件

# 模型训练
model.train(data="yolov8n/data_detect.yaml", epochs=100,imgsz = 640,batch=64)  # 训练模型

# 预测标签 source:是待标注的数据集文件夹
Model.predict(source="/home/sta/datasets/images1",save_txt=True)

3.校正预测的label

用labelImg标注软件,微调第二个数据集的label

4.依次处理第二、第三、第四和第五数据集

完成第二个子数据集,将第一个和第二个合在一起,再重新训练一个新的模型;预测第三个子数据集;依次处理

相关推荐
AI街潜水的八角16 小时前
工业缺陷检测实战——基于深度学习YOLOv10神经网络PCB缺陷检测系统
pytorch·深度学习·yolo
金色旭光21 小时前
目标检测高频评价指标的计算过程
算法·yolo
AI街潜水的八角1 天前
PyTorch框架——基于深度学习YOLOv8神经网络学生课堂行为检测识别系统
pytorch·深度学习·yolo
Hugh&2 天前
(开源)基于Django+Yolov8+Tensorflow的智能鸟类识别平台
python·yolo·django·tensorflow
天天代码码天天2 天前
C# OpenCvSharp 部署读光-票证检测矫正模型(cv_resnet18_card_correction)
人工智能·深度学习·yolo·目标检测·计算机视觉·c#·票证检测矫正
前网易架构师-高司机2 天前
行人识别检测数据集,yolo格式,PASICAL VOC XML,COCO JSON,darknet等格式的标注都支持,准确识别率可达99.5%
xml·yolo·行人检测数据集
abments3 天前
C# OpenCvSharp Yolov8 Face Landmarks 人脸特征检测
开发语言·yolo·c#
Coovally AI模型快速验证3 天前
目标检测新视野 | YOLO、SSD与Faster R-CNN三大目标检测模型深度对比分析
人工智能·yolo·目标检测·计算机视觉·目标跟踪·r语言·cnn
那年一路北3 天前
深入探究 YOLOv5:从优势到模型导出全方位解析
人工智能·yolo·目标跟踪
明月下4 天前
【数据分析】coco格式数据生成yolo数据可视化
yolo·信息可视化·数据分析