Spark Shuffle Tracking 原理分析

Shuffle Tracking

Shuffle Tracking 是 Spark 在没有 ESS(External Shuffle Service)情况,并且开启 Dynamic Allocation 的重要功能。如在 K8S 上运行 spark 没有 ESS。本文档所有的前提都是基于以上条件的。

如果开启了 ESS,那么 Executor 计算完后,把 shuffle 数据交给 ESS, Executor 没有任务时,可以安全退出,下游任务从 ESS 拉取 shuffle 数据。

1. 背景

如果 Executor 执行了上游的 Shuffle Map Task 并且把 shuffle 数据些到本地。并且现在 Executor 没有 Task 运行,那么此 Executor 是否能销毁?

现状是如果 Executor 没有 active 的 shuffle 数据,则可以被销毁。

active shuffle 的定义:如果 Shuffle Map Stage 的 task 把 shuffle 数据输出到本地。如果依赖此 shuffle 的Stage 没有计算完毕,则称此 shuffle 为 active shuffle。因为依赖此 shuffle 的 Task 可能从 Driver 端获取了 MapStatus,但是还没有拉取完 shuffle 数据。

为了达到此目的,需要跟踪每个 Stage 和每个 Task 的运行信息。并且启动定时任务,定时扫描每个 Executor,判断是否有任务运行,是否有 active 的 shuffle,如果没有则可以退出。

退出有两种,如果开启了 decommission,则到期的 executors 进入 decommission 模式,否则执行 killExecutors。

参数配置

bash 复制代码
spark.dynamicAllocation.shuffleTracking.enabled: 默认 true,是否开启 shuffle tracking。
spark.dynamicAllocation.shuffleTracking.timeout: 默认 Long.MaxValue,

2. 设计

ExecutorMonitor 为每个 Executor 创建一个 Tracker, 用于跟踪此 Executor 的状态。

java 复制代码
private val executors = new ConcurrentHashMap[String, Tracker]()

定时任务间隔时间查找 timeout 的 executor,然后处理。

timedOutExecutors 方法的主要逻辑,就是遍历 executors。如果 executor 没有 active 的 shuffle 并且当前时间大于 executor 的超时时间 timeoutAt,则此 executor 可以被安全释放。

为什么 executor 有 active shuffle 数据就不能 kill?

  • Shuffle 的过程:
  1. MapTask 把 shuffle 写到本地,并且把状态汇报给 Driver.
  2. Reduce Task 从 Driver 获取 shuffle status,并从 shuffle status 获取每个 shuffle 数据的地址。
  3. 连接对应的 executor 获取 shuffle 数据。

如果在 reduce 获取完 shuffle status 后,MapTask 所在的 Executor 被 kill 掉,Reduce Task 就无法获取 shuffle 数据。

如果执行 decommission 逻辑,把 MapTask 的 shuffle 数据长传到 bos 等分布式存储是否可以?

也是不可以的,因为 reduce 可能已经把 shuffle status 拿走,获取的 shuffle status 没有记录 shuffle 数据在分布式存储上。

参考: ExecutorMonitor,ExecutorAllocationManager

Executor 状态的更新

ExecutorMonitor 实现了 SparkListner 接口,当 Job, Stage, Task 等 start 和 end 时,都会执行回调。

以 hasActiveShuffle 为例

每个 executor 用一个集合 shuffleIds 存储其上拥有的 shuffle 数据。 当其为空时,说明没有 shuffle 数据。

在 onTaskEnd 和 onBlockUpdated 时调用 addShuffle 向 shuffleIds 添加数据。

在以下时机删除 shuffleIds 里的数据。

  1. 依赖 driver 端的 ContextCleaner,当 ShuffleRDD 仅有 weakReference 时触发。
  2. rdd.cleanShuffleDependencies 方法,但是此方法仅在 org.apache.spark.ml.recommendation.ALS 使用。

timeoutAt 的计算逻辑

总结:timeoutAt 根据 idle 的时间,spark.dynamicAllocation.cachedExecutorIdleTimeout 和 spark.dynamicAllocation.shuffleTracking.timeout 这 3 个值中最大的值。

详细计算逻辑:

timeoutAt 在一些事件发生时触发计算,如 onBlockUpdated, onUnpersistRDD, updateRunningTasks, removeShuffle, updateActiveShuffles

timeoutAt 的计算逻辑:

当执行器有计算任务时 为 Long.MaxValue。

否则为 max(_cacheTimeout, _shuffleTimeout, idleTimeoutNs)

_cacheTimeout: 如果没有 cache 数据,为0,否则为参数 spark.dynamicAllocation.cachedExecutorIdleTimeout 的值(默认 Long.MaxValue)。

_shuffleTimeout: 如果没有 shuffle数据,为 0, 否则为参数 spark.dynamicAllocation.shuffleTracking.timeout 的值(默认 Long.MaxValue)。

idleTimeoutNs 为 spark.dynamicAllocation.executorIdleTimeout

3. 测试

测试命令

bash 复制代码
spark-shell  \
 --conf spark.dynamicAllocation.enabled=true \
 --conf spark.dynamicAllocation.initialExecutors=2 \
 --conf spark.dynamicAllocation.maxExecutor=400 \
 --conf spark.dynamicAllocation.minExecutors=1 \
 --conf spark.shuffle.service.enabled=false \
 --conf spark.dynamicAllocation.shuffleTracking.enabled=true

参考资料:

https://www.waitingforcode.com/apache-spark/what-new-apache-spark-3-shuffle-service-changes/read

相关推荐
Aloudata1 小时前
从Apache Atlas到Aloudata BIG,数据血缘解析有何改变?
大数据·apache·数据血缘·主动元数据·数据链路
不能再留遗憾了1 小时前
RabbitMQ 高级特性——消息分发
分布式·rabbitmq·ruby
水豚AI课代表1 小时前
分析报告、调研报告、工作方案等的提示词
大数据·人工智能·学习·chatgpt·aigc
茶馆大橘1 小时前
微服务系列六:分布式事务与seata
分布式·docker·微服务·nacos·seata·springcloud
材料苦逼不会梦到计算机白富美4 小时前
golang分布式缓存项目 Day 1
分布式·缓存·golang
拓端研究室TRL4 小时前
【梯度提升专题】XGBoost、Adaboost、CatBoost预测合集:抗乳腺癌药物优化、信贷风控、比特币应用|附数据代码...
大数据
黄焖鸡能干四碗4 小时前
信息化运维方案,实施方案,开发方案,信息中心安全运维资料(软件资料word)
大数据·人工智能·软件需求·设计规范·规格说明书
想进大厂的小王4 小时前
项目架构介绍以及Spring cloud、redis、mq 等组件的基本认识
redis·分布式·后端·spring cloud·微服务·架构
Java 第一深情4 小时前
高性能分布式缓存Redis-数据管理与性能提升之道
redis·分布式·缓存
编码小袁4 小时前
探索数据科学与大数据技术专业本科生的广阔就业前景
大数据