【Educoder数据挖掘实训】异常值检测-3σ法

【Educoder数据挖掘实训】异常值检测-3σ法

开挖!

这个异常值检测基于的是两点:

  1. 数据往往遵循正态分布
  2. 在正态分布中, [ μ − 3 σ , μ + 3 σ ] [\mu - 3\sigma, \mu +3\sigma] [μ−3σ,μ+3σ]包含了正态分布中 99.74 % 99.74\% 99.74%的数据。

所以一个很容易想到的方法就是舍弃在上述区间之外的数。

代码实现也比较容易,跟上一个实训箱线图代码实现一般无二。

只需要借住 S e r i e s Series Series中的函数 m e a n mean mean计算平均值、 s t d std std计算标准差即可。

python 复制代码
import pandas as pd
import matplotlib.pyplot as plt
from scipy import stats
import numpy as np

data = pd.read_csv("src/death.csv", index_col='Unnamed: 0')

data = data.dropna(axis=1, thresh=data.shape[0] * 0.2)
data = data.dropna(axis=0, thresh=data.shape[1] * 0.2)

a = pd.isna(data).sum()
cols = [x for i, x in enumerate(a.index) if a[i] > 0]

mode_list = 'FIPS Admin2'
for i in cols:
    if mode_list.find(i) != -1:
        data[i] = data[i].fillna(data[i].mode().iloc[0])
    else:
        data[i] = data[i].fillna(data.mean()[i])


cols = '2008/10/20,2008/11/20,2008/12/20'.split(',')
x = data[cols]

########## Begin ########## 
# 3σ 原则检测异常值
bar, sigma = x.mean(), x.std()

outliers_index = (x < bar - 3 * sigma) | (x > bar + 3 * sigma)
# 删除异常值

x = x[~outliers_index]

# 打印各列异常值个数 
print(outliers_index.sum())

########## End ########## 
相关推荐
cwj&xyp8 分钟前
Python(二)str、list、tuple、dict、set
前端·python·算法
是十一月末11 分钟前
Opencv实现图片的边界填充和阈值处理
人工智能·python·opencv·计算机视觉
机智的叉烧44 分钟前
前沿重器[57] | sigir24:大模型推荐系统的文本ID对齐学习
人工智能·学习·机器学习
凳子花❀1 小时前
强化学习与深度学习以及相关芯片之间的区别
人工智能·深度学习·神经网络·ai·强化学习
泰迪智能科技013 小时前
高校深度学习视觉应用平台产品介绍
人工智能·深度学习
盛派网络小助手3 小时前
微信 SDK 更新 Sample,NCF 文档和模板更新,更多更新日志,欢迎解锁
开发语言·人工智能·后端·架构·c#
算法小白(真小白)3 小时前
低代码软件搭建自学第二天——构建拖拽功能
python·低代码·pyqt
唐小旭3 小时前
服务器建立-错误:pyenv环境建立后python版本不对
运维·服务器·python
007php0073 小时前
Go语言zero项目部署后启动失败问题分析与解决
java·服务器·网络·python·golang·php·ai编程
Eric.Lee20213 小时前
Paddle OCR 中英文检测识别 - python 实现
人工智能·opencv·计算机视觉·ocr检测