【Educoder数据挖掘实训】异常值检测-3σ法

【Educoder数据挖掘实训】异常值检测-3σ法

开挖!

这个异常值检测基于的是两点:

  1. 数据往往遵循正态分布
  2. 在正态分布中, [ μ − 3 σ , μ + 3 σ ] [\mu - 3\sigma, \mu +3\sigma] [μ−3σ,μ+3σ]包含了正态分布中 99.74 % 99.74\% 99.74%的数据。

所以一个很容易想到的方法就是舍弃在上述区间之外的数。

代码实现也比较容易,跟上一个实训箱线图代码实现一般无二。

只需要借住 S e r i e s Series Series中的函数 m e a n mean mean计算平均值、 s t d std std计算标准差即可。

python 复制代码
import pandas as pd
import matplotlib.pyplot as plt
from scipy import stats
import numpy as np

data = pd.read_csv("src/death.csv", index_col='Unnamed: 0')

data = data.dropna(axis=1, thresh=data.shape[0] * 0.2)
data = data.dropna(axis=0, thresh=data.shape[1] * 0.2)

a = pd.isna(data).sum()
cols = [x for i, x in enumerate(a.index) if a[i] > 0]

mode_list = 'FIPS Admin2'
for i in cols:
    if mode_list.find(i) != -1:
        data[i] = data[i].fillna(data[i].mode().iloc[0])
    else:
        data[i] = data[i].fillna(data.mean()[i])


cols = '2008/10/20,2008/11/20,2008/12/20'.split(',')
x = data[cols]

########## Begin ########## 
# 3σ 原则检测异常值
bar, sigma = x.mean(), x.std()

outliers_index = (x < bar - 3 * sigma) | (x > bar + 3 * sigma)
# 删除异常值

x = x[~outliers_index]

# 打印各列异常值个数 
print(outliers_index.sum())

########## End ########## 
相关推荐
大雷神1 天前
HarmonyOS智慧农业管理应用开发教程--高高种地--第16篇:HarmonyOS AI能力概述与集成
人工智能·华为·harmonyos
Hugging Face1 天前
DeepSeek之后:中国开源人工智能生态的架构选择
人工智能·开源
wxl7812271 天前
2026年人工智能发展趋势:效率重构、生态协同与规范前行
大数据·人工智能·重构
沃达德软件1 天前
重点人员动态管控系统解析
数据仓库·人工智能·hive·hadoop·redis·hbase
2501_948120151 天前
基于神经网络的音乐情感分析器
人工智能·深度学习·神经网络
九河云1 天前
数字韧性时代,华为云CBR为业务连续性注入“免疫基因”
大数据·人工智能·安全·机器学习·华为云
森诺Alyson1 天前
前沿技术借鉴研讨-2026.1.29(时间序列预测)
论文阅读·人工智能·经验分享·深度学习·论文笔记
2401_891450461 天前
Python上下文管理器(with语句)的原理与实践
jvm·数据库·python
林籁泉韵71 天前
GEO服务商深度评测:在AI重构的信息世界中,谁能为品牌奠定“数据基石”?
人工智能·重构
helloworldandy1 天前
使用Python处理计算机图形学(PIL/Pillow)
jvm·数据库·python