【Educoder数据挖掘实训】异常值检测-3σ法

【Educoder数据挖掘实训】异常值检测-3σ法

开挖!

这个异常值检测基于的是两点:

  1. 数据往往遵循正态分布
  2. 在正态分布中, [ μ − 3 σ , μ + 3 σ ] [\mu - 3\sigma, \mu +3\sigma] [μ−3σ,μ+3σ]包含了正态分布中 99.74 % 99.74\% 99.74%的数据。

所以一个很容易想到的方法就是舍弃在上述区间之外的数。

代码实现也比较容易,跟上一个实训箱线图代码实现一般无二。

只需要借住 S e r i e s Series Series中的函数 m e a n mean mean计算平均值、 s t d std std计算标准差即可。

python 复制代码
import pandas as pd
import matplotlib.pyplot as plt
from scipy import stats
import numpy as np

data = pd.read_csv("src/death.csv", index_col='Unnamed: 0')

data = data.dropna(axis=1, thresh=data.shape[0] * 0.2)
data = data.dropna(axis=0, thresh=data.shape[1] * 0.2)

a = pd.isna(data).sum()
cols = [x for i, x in enumerate(a.index) if a[i] > 0]

mode_list = 'FIPS Admin2'
for i in cols:
    if mode_list.find(i) != -1:
        data[i] = data[i].fillna(data[i].mode().iloc[0])
    else:
        data[i] = data[i].fillna(data.mean()[i])


cols = '2008/10/20,2008/11/20,2008/12/20'.split(',')
x = data[cols]

########## Begin ########## 
# 3σ 原则检测异常值
bar, sigma = x.mean(), x.std()

outliers_index = (x < bar - 3 * sigma) | (x > bar + 3 * sigma)
# 删除异常值

x = x[~outliers_index]

# 打印各列异常值个数 
print(outliers_index.sum())

########## End ########## 
相关推荐
抱抱宝4 分钟前
Pyecharts之图表样式深度定制
python·信息可视化·数据分析
码界筑梦坊13 分钟前
基于Flask的哔哩哔哩评论数据可视化分析系统的设计与实现
python·信息可视化·flask·毕业设计
大懒猫软件21 分钟前
如何有效使用Python爬虫将网页数据存储到Word文档
爬虫·python·自动化·word
大数据魔法师25 分钟前
1905电影网中国地区电影数据分析(二) - 数据分析与可视化
python·数据分析
&白帝&25 分钟前
JAVA JDK7时间相关类
java·开发语言·python
涛涛讲AI1 小时前
扣子平台音频功能:让声音也能“智能”起来
人工智能·音视频·工作流·智能体·ai智能体·ai应用
霍格沃兹测试开发学社测试人社区1 小时前
人工智能在音频、视觉、多模态领域的应用
软件测试·人工智能·测试开发·自动化·音视频
herosunly1 小时前
2024:人工智能大模型的璀璨年代
人工智能·大模型·年度总结·博客之星
PaLu-LI1 小时前
ORB-SLAM2源码学习:Initializer.cc(13): Initializer::ReconstructF用F矩阵恢复R,t及三维点
c++·人工智能·学习·线性代数·ubuntu·计算机视觉·矩阵
呆呆珝2 小时前
RKNN_C++版本-YOLOV5
c++·人工智能·嵌入式硬件·yolo