【Educoder数据挖掘实训】异常值检测-3σ法

【Educoder数据挖掘实训】异常值检测-3σ法

开挖!

这个异常值检测基于的是两点:

  1. 数据往往遵循正态分布
  2. 在正态分布中, [ μ − 3 σ , μ + 3 σ ] [\mu - 3\sigma, \mu +3\sigma] [μ−3σ,μ+3σ]包含了正态分布中 99.74 % 99.74\% 99.74%的数据。

所以一个很容易想到的方法就是舍弃在上述区间之外的数。

代码实现也比较容易,跟上一个实训箱线图代码实现一般无二。

只需要借住 S e r i e s Series Series中的函数 m e a n mean mean计算平均值、 s t d std std计算标准差即可。

python 复制代码
import pandas as pd
import matplotlib.pyplot as plt
from scipy import stats
import numpy as np

data = pd.read_csv("src/death.csv", index_col='Unnamed: 0')

data = data.dropna(axis=1, thresh=data.shape[0] * 0.2)
data = data.dropna(axis=0, thresh=data.shape[1] * 0.2)

a = pd.isna(data).sum()
cols = [x for i, x in enumerate(a.index) if a[i] > 0]

mode_list = 'FIPS Admin2'
for i in cols:
    if mode_list.find(i) != -1:
        data[i] = data[i].fillna(data[i].mode().iloc[0])
    else:
        data[i] = data[i].fillna(data.mean()[i])


cols = '2008/10/20,2008/11/20,2008/12/20'.split(',')
x = data[cols]

########## Begin ########## 
# 3σ 原则检测异常值
bar, sigma = x.mean(), x.std()

outliers_index = (x < bar - 3 * sigma) | (x > bar + 3 * sigma)
# 删除异常值

x = x[~outliers_index]

# 打印各列异常值个数 
print(outliers_index.sum())

########## End ########## 
相关推荐
dlraba8022 分钟前
YOLOv3:目标检测领域的经典之作
人工智能·yolo·目标检测
科新数智10 分钟前
破解商家客服困局:真人工AI回复如何成为转型核心
人工智能·#agent #智能体
你才是向阳花11 分钟前
如何用python来做小游戏
开发语言·python·pygame
'需尽欢'1 小时前
基于 Flask+Vue+MySQL的研学网站
python·mysql·flask
szxinmai主板定制专家2 小时前
【NI测试方案】基于ARM+FPGA的整车仿真与电池标定
arm开发·人工智能·yolo·fpga开发
新子y2 小时前
【小白笔记】最大交换 (Maximum Swap)问题
笔记·python
ygyqinghuan3 小时前
读懂目标检测
人工智能·目标检测·目标跟踪
华东数交3 小时前
企业与国有数据资产:入表全流程管理及资产化闭环理论解析
大数据·人工智能
程序员爱钓鱼3 小时前
Python编程实战 · 基础入门篇 | Python的缩进与代码块
后端·python
pr_note4 小时前
python|if判断语法对比
python