分类问题经典算法 | 二分类问题 | Logistic回归:梯度下降

目录

  • [一. 损失函数](#一. 损失函数)
    • [1. 交叉熵损失函数](#1. 交叉熵损失函数)
    • [2. 梯度下降](#2. 梯度下降)

一. 损失函数

Logistic回归算法公式推导篇中,我们通过对似然函数求对数,得到 l ( θ ) l(\theta ) l(θ):
l ( θ ) = l n [ L ( θ ) ] = ∑ i = 1 M { y ( i ) l n [ h θ ( x ( i ) ) ] + ( 1 − y ( i ) ) l n [ 1 − h θ ( x ( i ) ) ] } l(\theta )=ln\left [ L(\theta)\right ]=\sum_{i=1}^{M}\left \{y^{(i)}ln[h_{\theta}(x^{(i)} )]+(1-y^{(i)})ln[1-h_{\theta}(x^{(i)} )] \right \} l(θ)=ln[L(θ)]=i=1∑M{y(i)ln[hθ(x(i))]+(1−y(i))ln[1−hθ(x(i))]}

公式解释1: l ( θ ) l(\theta ) l(θ)

对于似然函数,其含义可以解释为:

用已知的观测数据(x值、y值),在某个事件发生概率最大时候,求函数的参数

究竟上述的这个事件发生概率有多大呢?当然是概率越接近1越好,越大越好

结合对似然函数的描述,当似然函数取最大时,模型最优,那么此时我们就可以定义损失函数
J ( θ ) = − l ( θ ) = ∑ i = 1 M { − y ( i ) l n [ h θ ( x ( i ) ) ] − ( 1 − y ( i ) ) l n [ 1 − h θ ( x ( i ) ) ] } J(\theta)=-l(\theta)=\sum_{i=1}^{M}\left \{-y^{(i)}ln[h_{\theta}(x^{(i)} )]-(1-y^{(i)})ln[1-h_{\theta}(x^{(i)} )] \right \} J(θ)=−l(θ)=i=1∑M{−y(i)ln[hθ(x(i))]−(1−y(i))ln[1−hθ(x(i))]}

公式解释2: J ( θ ) J(\theta ) J(θ)

对于损失函数这样定义不太理解的同学,看这里!!!

明确我们预测的目的:

对于一个样本的预测,我们希望模型能预测真实标签的概率越接近1越好,预测的越准确越好

上述目的如果套用至似然函数中,我们就可以说:

对于观测数据(有1有0),我希望模型预测真实标签的概率越接近1越好

若我对似然函数取反,他的含义就变得非常符合我们对于损失函数的要求,即损失越小越好:

对于观测数据,此时我们的期望就变成了,预测真实标签的概率越接近0越好,预测的准确率越低越好;

而事件(预测的准确率越低越好)发生的概率,从预测目的来说,我们希望越低越好,即损失函数越小越好

其实,从数学层面讲,似然函数求最大值就等价于求公式前加负号的最小值

1. 交叉熵损失函数

上述定义的损失函数,是非常著名的交叉熵(CrossEntropy)损失函数 ,该函数为凸函数,表示为:
C o s t ( h θ ( x ) , y ) = { − l n ( h θ ( x ) ) , y = 1 − l n ( 1 − h θ ( x ) ) , y = 0 Cost(h_{\theta}(x),y)=\left\{\begin{matrix}-ln(h_{\theta}(x)),y=1 \\-ln(1-h_{\theta}(x)),y=0\end{matrix}\right. Cost(hθ(x),y)={−ln(hθ(x)),y=1−ln(1−hθ(x)),y=0

2. 梯度下降

在定义模型的损失函数后,通过对损失求导来更新梯度,梯度更新公式:
θ i ′ = θ i − α ∂ J ∂ θ i {\theta _{i} }' =\theta _{i}-\alpha \tfrac{\partial J}{\partial \theta _{i}} θi′=θi−α∂θi∂J

其中,损失函数的梯度值为 ∂ J ( θ ) ∂ θ j = ∑ i = 1 M [ h θ ( x ( i ) ) − y ( i ) ] ∗ x j ( i ) \frac{\partial J(\theta )}{\partial \theta {j} }=\sum{i=1}^{M}[h_{\theta}(x^{(i)} )-y^{(i)} ] \ast x_{j}^{(i)} ∂θj∂J(θ)=i=1∑M[hθ(x(i))−y(i)]∗xj(i)

推导过程在Logistic回归算法 公式推导篇中


感谢阅读🌼

如果喜欢这篇文章,记得点赞👍和转发🔄哦!

有任何想法或问题,欢迎留言交流💬,我们下次见!

祝愉快🌟!


相关推荐
Hcoco_me15 分钟前
大模型面试题75:讲解一下GRPO的数据回放
人工智能·深度学习·算法·机器学习·vllm
Xの哲學18 分钟前
Linux设备驱动模型深度解剖: 从设计哲学到实战演练
linux·服务器·网络·算法·边缘计算
赫尔·普莱蒂科萨·帕塔20 分钟前
“共享”机器人
人工智能·机器人·agi
duyinbi751725 分钟前
改进YOLO13模型:C3k2与PPA优化在油田工人安全装备检测与行为识别中的应用
人工智能·安全·目标跟踪
明洞日记34 分钟前
【CUDA手册002】CUDA 基础执行模型:写出第一个正确的 Kernel
c++·图像处理·算法·ai·图形渲染·gpu·cuda
Duang007_38 分钟前
【LeetCodeHot100 超详细Agent启发版本】两数之和 (Two Sum)
java·人工智能·python
Ydwlcloud1 小时前
AWS 2026折扣活动深度解析:寻找最大优惠的智慧路径
大数据·服务器·人工智能·云计算·aws
NingboWill1 小时前
AI日报 - 2026年01月14日
人工智能
QYR_111 小时前
聚偏二氟乙烯(PVDF)行业市场深度调研与投资前景预测报告2026版
大数据·人工智能
2401_832298101 小时前
芯片级机密计算,天翼云CSV3筑牢数据“可用不可见”防线
大数据·网络·人工智能