【自然语言处理五-注意力其他--多头注意力&位置编码等】

自然语言处理五-self attention的其他问题(多头注意力&位置编码)等

之前用四篇博客说明了注意力以及自注意力的运作流程,下面来介绍剩余点。

多头注意力、位置编码

多头注意力 multi-head attention

单头的注意力是这样的:

而多头的矩阵是这样的:

也就是说我们由输入生成的q k v矩阵是多组,上面的图就显示2头注意力的示意图。

多头注意力的意义是什么?

事物之间的关系,往往不止一种,多头就意味着多种不同类型的相关性

多头注意力的运作流程

单头的注意力的过程是这样的:

而多头的注意力,计算注意力分数、softmax等操作都是相同的,只不过会有两次这样的操作,最终每一个输入对应的bi会生成多个,以两头注意力为例子:

第一次生成bi,1,第二次生成bi,2,下面是示例了生成bi,2的过程:

而注意力层最终的输出是将(bi,1,bi,2)又做了一次矩阵乘法

整体注意力层对外的输出 的bi就整合了多头(bi,1,bi,2)的信息了。

位置编码postion encoding

前面讲的自注意力其实缺少了一部分,没有任何关于位置的信息。

但是在自然语言处理领域,位置信息有时候很重要,比如词性识别的时候,动词在开头的概率一般很小。因此self attention中又加入了位置信息编码:

postion encoding,具体的做法就是在输入加上一个位置信息向量ei,Q K V的信息中就包括了位置的信息,如下图:

这个ei的生成有多重方法:

1.transformer论文中 用sin和cos的函数

2.手动设置

3.其他。在其他的论文中还有很多种做法

相关推荐
kevin_kang4 分钟前
11-SQLAlchemy 2.0异步ORM实战指南
人工智能
AI架构师易筋14 分钟前
AI学习路径全景指南:从基础到工程化的资源与策略
人工智能·学习
计算机毕业设计指导14 分钟前
基于深度学习的车牌识别系统
人工智能·深度学习
九章算科研服务25 分钟前
九章算 JACS 解读-重庆大学黄建峰教授课题组:基于柯肯达尔效应构筑Cu/Ru异质界面空腔结构,用于高效NO3−电还原制NH3
人工智能·科研·dft计算·科研服务·硕博
Hcoco_me32 分钟前
大模型面试题27:Muon优化器小白版速懂
人工智能·rnn·自然语言处理·lstm·word2vec
过期的秋刀鱼!32 分钟前
机器学习-逻辑回归的成本函数
人工智能·机器学习·逻辑回归
haiyu_y32 分钟前
Day 54 Inception 网络及其思考
人工智能·pytorch·深度学习
老吴学AI35 分钟前
第二篇:智能五层模型:定义你的AI应用战略高度
大数据·人工智能·aigc
deephub37 分钟前
从贝叶斯视角解读Transformer的内部几何:mHC的流形约束与大模型训练稳定性
人工智能·深度学习·神经网络·transformer·残差链接
CoderJia程序员甲37 分钟前
2025年度总结之-如何构建 2025 专属的 GitHub AI 项目情报库
人工智能·ai·大模型·github·ai教程