【自然语言处理五-注意力其他--多头注意力&位置编码等】

自然语言处理五-self attention的其他问题(多头注意力&位置编码)等

之前用四篇博客说明了注意力以及自注意力的运作流程,下面来介绍剩余点。

多头注意力、位置编码

多头注意力 multi-head attention

单头的注意力是这样的:

而多头的矩阵是这样的:

也就是说我们由输入生成的q k v矩阵是多组,上面的图就显示2头注意力的示意图。

多头注意力的意义是什么?

事物之间的关系,往往不止一种,多头就意味着多种不同类型的相关性

多头注意力的运作流程

单头的注意力的过程是这样的:

而多头的注意力,计算注意力分数、softmax等操作都是相同的,只不过会有两次这样的操作,最终每一个输入对应的bi会生成多个,以两头注意力为例子:

第一次生成bi,1,第二次生成bi,2,下面是示例了生成bi,2的过程:

而注意力层最终的输出是将(bi,1,bi,2)又做了一次矩阵乘法

整体注意力层对外的输出 的bi就整合了多头(bi,1,bi,2)的信息了。

位置编码postion encoding

前面讲的自注意力其实缺少了一部分,没有任何关于位置的信息。

但是在自然语言处理领域,位置信息有时候很重要,比如词性识别的时候,动词在开头的概率一般很小。因此self attention中又加入了位置信息编码:

postion encoding,具体的做法就是在输入加上一个位置信息向量ei,Q K V的信息中就包括了位置的信息,如下图:

这个ei的生成有多重方法:

1.transformer论文中 用sin和cos的函数

2.手动设置

3.其他。在其他的论文中还有很多种做法

相关推荐
编码小哥19 小时前
OpenCV Haar级联分类器:人脸检测入门
人工智能·计算机视觉·目标跟踪
程序员:钧念19 小时前
深度学习与强化学习的区别
人工智能·python·深度学习·算法·transformer·rag
数据与后端架构提升之路20 小时前
TeleTron 源码揭秘:如何用适配器模式“无缝魔改” Megatron-Core?
人工智能·python·适配器模式
Chef_Chen20 小时前
数据科学每日总结--Day44--机器学习
人工智能·机器学习
这张生成的图像能检测吗20 小时前
(论文速读)FR-IQA:面向广义图像质量评价:放松完美参考质量假设
人工智能·计算机视觉·图像增强·图像质量评估指标
KG_LLM图谱增强大模型21 小时前
本体论与知识图谱:揭示语义技术的核心差异
人工智能·知识图谱·本体论
JicasdC123asd21 小时前
黄瓜植株目标检测:YOLOv8结合Fasternet与BiFPN的高效改进方案
人工智能·yolo·目标检测
爱吃泡芙的小白白1 天前
深入解析:2024年AI大模型核心算法与应用全景
人工智能·算法·大模型算法
小程故事多_801 天前
攻克RAG系统最后一公里 图文混排PDF解析的挑战与实战方案
人工智能·架构·pdf·aigc
琅琊榜首20201 天前
AI+编程双驱动:高质量短剧创作全流程指南
人工智能