【自然语言处理五-注意力其他--多头注意力&位置编码等】

自然语言处理五-self attention的其他问题(多头注意力&位置编码)等

之前用四篇博客说明了注意力以及自注意力的运作流程,下面来介绍剩余点。

多头注意力、位置编码

多头注意力 multi-head attention

单头的注意力是这样的:

而多头的矩阵是这样的:

也就是说我们由输入生成的q k v矩阵是多组,上面的图就显示2头注意力的示意图。

多头注意力的意义是什么?

事物之间的关系,往往不止一种,多头就意味着多种不同类型的相关性

多头注意力的运作流程

单头的注意力的过程是这样的:

而多头的注意力,计算注意力分数、softmax等操作都是相同的,只不过会有两次这样的操作,最终每一个输入对应的bi会生成多个,以两头注意力为例子:

第一次生成bi,1,第二次生成bi,2,下面是示例了生成bi,2的过程:

而注意力层最终的输出是将(bi,1,bi,2)又做了一次矩阵乘法

整体注意力层对外的输出 的bi就整合了多头(bi,1,bi,2)的信息了。

位置编码postion encoding

前面讲的自注意力其实缺少了一部分,没有任何关于位置的信息。

但是在自然语言处理领域,位置信息有时候很重要,比如词性识别的时候,动词在开头的概率一般很小。因此self attention中又加入了位置信息编码:

postion encoding,具体的做法就是在输入加上一个位置信息向量ei,Q K V的信息中就包括了位置的信息,如下图:

这个ei的生成有多重方法:

1.transformer论文中 用sin和cos的函数

2.手动设置

3.其他。在其他的论文中还有很多种做法

相关推荐
时见先生20 小时前
Python库和conda搭建虚拟环境
开发语言·人工智能·python·自然语言处理·conda
昨夜见军贴06161 天前
IACheck AI审核在生产型企业质量控制记录中的实践探索——全面赋能有关物质研究合规升级
大数据·人工智能
智星云算力1 天前
智星云镜像共享全流程指南,附避坑手册(新手必看)
人工智能
盖雅工场1 天前
驱动千店销售转化提升10%:3C零售门店的人效优化实战方案
大数据·人工智能·零售·数字化管理·智能排班·零售排班
Loo国昌1 天前
深入理解 FastAPI:Python高性能API框架的完整指南
开发语言·人工智能·后端·python·langchain·fastapi
发哥来了1 天前
【AI视频创作】【评测】【核心能力与成本效益】
大数据·人工智能
醉舞经阁半卷书11 天前
Python机器学习常用库快速精通
人工智能·python·深度学习·机器学习·数据挖掘·数据分析·scikit-learn
产品何同学1 天前
在线问诊医疗APP如何设计?2套原型拆解与AI生成原型图实战
人工智能·产品经理·健康医疗·在线问诊·app原型·ai生成原型图·医疗app
星爷AG I1 天前
9-14 知觉整合(AGI基础理论)
人工智能·agi
开源技术1 天前
Violit: Streamlit杀手,无需全局刷新,构建AI面板
人工智能·python