【自然语言处理五-注意力其他--多头注意力&位置编码等】

自然语言处理五-self attention的其他问题(多头注意力&位置编码)等

之前用四篇博客说明了注意力以及自注意力的运作流程,下面来介绍剩余点。

多头注意力、位置编码

多头注意力 multi-head attention

单头的注意力是这样的:

而多头的矩阵是这样的:

也就是说我们由输入生成的q k v矩阵是多组,上面的图就显示2头注意力的示意图。

多头注意力的意义是什么?

事物之间的关系,往往不止一种,多头就意味着多种不同类型的相关性

多头注意力的运作流程

单头的注意力的过程是这样的:

而多头的注意力,计算注意力分数、softmax等操作都是相同的,只不过会有两次这样的操作,最终每一个输入对应的bi会生成多个,以两头注意力为例子:

第一次生成bi,1,第二次生成bi,2,下面是示例了生成bi,2的过程:

而注意力层最终的输出是将(bi,1,bi,2)又做了一次矩阵乘法

整体注意力层对外的输出 的bi就整合了多头(bi,1,bi,2)的信息了。

位置编码postion encoding

前面讲的自注意力其实缺少了一部分,没有任何关于位置的信息。

但是在自然语言处理领域,位置信息有时候很重要,比如词性识别的时候,动词在开头的概率一般很小。因此self attention中又加入了位置信息编码:

postion encoding,具体的做法就是在输入加上一个位置信息向量ei,Q K V的信息中就包括了位置的信息,如下图:

这个ei的生成有多重方法:

1.transformer论文中 用sin和cos的函数

2.手动设置

3.其他。在其他的论文中还有很多种做法

相关推荐
汽车仪器仪表相关领域4 小时前
LambdaCAN:重构专业空燃比测量的数字化范式
大数据·人工智能·功能测试·安全·重构·汽车·压力测试
璞华Purvar5 小时前
地方产投集团数字化平台建设实战:从内控管理到决策赋能(璞华公开课第5期活动回顾)
大数据·人工智能
Byron Loong5 小时前
【半导体】KLA 公司eDR介绍
人工智能
Jay20021115 小时前
【机器学习】31-32 强化学习介绍 & 状态-动作值函数
人工智能·机器学习
测试人社区-千羽5 小时前
大语言模型在软件测试中的应用与挑战
人工智能·测试工具·语言模型·自然语言处理·面试·职场和发展·aigc
niaonao5 小时前
企业级AI Agent本地化部署实战:基于讯飞星辰与Astron的实战详解(附避坑清单)
人工智能·agent·科大讯飞·astron
ModelWhale6 小时前
实训赋能,平台支撑:和鲸科技助力南京大学人工智能基础课落地
人工智能·科技
胡萝卜3.06 小时前
C++现代模板编程核心技术精解:从类型分类、引用折叠、完美转发的内在原理,到可变模板参数的基本语法、包扩展机制及emplace接口的底层实现
开发语言·c++·人工智能·机器学习·完美转发·引用折叠·可变模板参数
Codebee6 小时前
OODER图生代码框架:Java注解驱动的全栈实现与落地挑战
人工智能
中冕—霍格沃兹软件开发测试6 小时前
测试用例库建设与管理方案
数据库·人工智能·科技·开源·测试用例·bug