13 pyflink/scala 进行 csv 文件的批处理

前言

这是 最近有一个 来自于朋友的 pyflink 的使用需求

然后 看到了 很多 pyflink 这边的和 使用 java, scala 的 api 使用上的很多差异

这里使用的 pyflink 版本是 1.16.3

pyflink 1.16.3 中批处理相关貌似要使用 Table API 来进行处理, datastreaming api 使用多多少少存在问题

但是 这个如果是在 java, scala 中写一段 批处理的脚本就简单的多了

pyflink 1.16.3 这里, 要使用 Table API 进行处理

这里整体的过程, 也是 构建 Source, Transformation, Sink 然后进行执行

flink-sql 会转换为 flink job 进行业务处理, sql 中就包含了 转换的处理

复制代码
from pyflink.table import EnvironmentSettings, TableEnvironment

settings = EnvironmentSettings.new_instance().in_batch_mode().build()

t_env = TableEnvironment.create(settings)
t_env.get_config().set("parallelism.default", "1")

t_env.execute_sql("""
    CREATE TABLE mySource (
        country STRING,
        year_field STRING,
        sex STRING
    ) WITH (
        'connector' = 'filesystem',
        'format' = 'csv',
        'path' = '/Users/jerry/Tmp/17_pyspark_csv/suicide_clear_3fields.csv'
    )
""")

t_env.execute_sql("""
    CREATE TABLE mySink (
        updated_country STRING,
        updated_year STRING,
        counter BIGINT
    ) WITH (
        'connector' = 'filesystem',
        'format' = 'csv',
        'path' = '/Users/jerry/Tmp/17_pyspark_csv/output_by_flink_sql'
    )
""")


t_env.execute_sql("""
    INSERT INTO mySink
    SELECT country as updated_country, year_field AS updated_year, count(*) as counter
    FROM mySource
    WHERE year_field = '1987'
    group by country, year_field
""").wait()

最终执行结果如下, 实现了 数据的批处理

使用 scala 来进行数据的批处理

可以使用大量 api, 不仅仅局限于 sql, 处理方式上面 更加抽象, 灵活一些

可能是 程序员更加偏爱的处理方式, flink-sql 稍微简单一些, 处理的场景 也有一些局限

复制代码
package com.hx.test

import org.apache.flink.api.scala.{ExecutionEnvironment, _}
import org.apache.flink.configuration.Configuration

/**
  * Test01WordCount
  *
  * @author Jerry.X.He <970655147@qq.com>
  * @version 1.0
  * @date 2021-04-02 18:07
  */
object Test04ReadCsvThenGroup {

  def main(args: Array[String]): Unit = {

    // 创建一个批处理的执行环境
    val conf = new Configuration()
    conf.setString("taskmanager.numberOfTaskSlots", "3")
    conf.setString("rest.bind-port", "8081")
    conf.setString("parallelism.default", "1")
    val env = ExecutionEnvironment.getExecutionEnvironment
    env.setParallelism(1)

    // 从文件中读取数据
    val inputPath = "/Users/jerry/Tmp/17_pyspark_csv/suicide_clear.csv"
    val inputDs = env.readTextFile(inputPath)


    val result = inputDs
      .filter(line => !line.contains("year,"))
      .map(line => {
        val splits = line.split("\\s*,\\s*")
        Person(splits(0), Integer.parseInt(splits(1)), splits(2), 1)
      }
      )
      .filter(person => {
        person.year == 1987
      })
      .map(person => {
        (person.country, person)
      })
      .groupBy(0)
      .reduce((v1, v2) => {
        v1._2.count = v1._2.count + v2._2.count
        v1
      })
      .map(tuple => tuple._2)

    // 打印输出
    result.print()

    System.in.read()

  }

  case class Person(country: String, year: Int, sex: String, var count: Int) {
  }

}

输出结果如下

相关推荐
非凡ghost2 分钟前
Topaz Video(人工智能视频增强软件)
人工智能·windows·学习·音视频·软件需求
余俊晖3 分钟前
从豆包手机等看GUI Agent:MobileRL GUI Agent训练框架和安卓XML预处理
人工智能·语言模型·自然语言处理·gui
upper20205 分钟前
数据挖掘08
人工智能·数据挖掘
upper20205 分钟前
数据挖掘07
人工智能·数据挖掘
从负无穷开始的三次元代码生活5 分钟前
深度学习知识点概念速通——人工智能专业考试基础知识点
人工智能·深度学习
upper20205 分钟前
数据挖掘06
人工智能·数据挖掘
码农小白猿6 分钟前
农产品溯源新风潮:IACheck如何精准校验区块链记录与物流数据一致性
人工智能·ai·iacheck
爱笑的眼睛118 分钟前
深入 Django 表单 API:从数据流到高级定制
java·人工智能·python·ai
搬砖的kk11 分钟前
AMLA:以加代乘,解锁昇腾 MLA 算子高性能新范式
人工智能
upper202011 分钟前
数据挖掘05
人工智能·数据挖掘