13 pyflink/scala 进行 csv 文件的批处理

前言

这是 最近有一个 来自于朋友的 pyflink 的使用需求

然后 看到了 很多 pyflink 这边的和 使用 java, scala 的 api 使用上的很多差异

这里使用的 pyflink 版本是 1.16.3

pyflink 1.16.3 中批处理相关貌似要使用 Table API 来进行处理, datastreaming api 使用多多少少存在问题

但是 这个如果是在 java, scala 中写一段 批处理的脚本就简单的多了

pyflink 1.16.3 这里, 要使用 Table API 进行处理

这里整体的过程, 也是 构建 Source, Transformation, Sink 然后进行执行

flink-sql 会转换为 flink job 进行业务处理, sql 中就包含了 转换的处理

复制代码
from pyflink.table import EnvironmentSettings, TableEnvironment

settings = EnvironmentSettings.new_instance().in_batch_mode().build()

t_env = TableEnvironment.create(settings)
t_env.get_config().set("parallelism.default", "1")

t_env.execute_sql("""
    CREATE TABLE mySource (
        country STRING,
        year_field STRING,
        sex STRING
    ) WITH (
        'connector' = 'filesystem',
        'format' = 'csv',
        'path' = '/Users/jerry/Tmp/17_pyspark_csv/suicide_clear_3fields.csv'
    )
""")

t_env.execute_sql("""
    CREATE TABLE mySink (
        updated_country STRING,
        updated_year STRING,
        counter BIGINT
    ) WITH (
        'connector' = 'filesystem',
        'format' = 'csv',
        'path' = '/Users/jerry/Tmp/17_pyspark_csv/output_by_flink_sql'
    )
""")


t_env.execute_sql("""
    INSERT INTO mySink
    SELECT country as updated_country, year_field AS updated_year, count(*) as counter
    FROM mySource
    WHERE year_field = '1987'
    group by country, year_field
""").wait()

最终执行结果如下, 实现了 数据的批处理

使用 scala 来进行数据的批处理

可以使用大量 api, 不仅仅局限于 sql, 处理方式上面 更加抽象, 灵活一些

可能是 程序员更加偏爱的处理方式, flink-sql 稍微简单一些, 处理的场景 也有一些局限

复制代码
package com.hx.test

import org.apache.flink.api.scala.{ExecutionEnvironment, _}
import org.apache.flink.configuration.Configuration

/**
  * Test01WordCount
  *
  * @author Jerry.X.He <970655147@qq.com>
  * @version 1.0
  * @date 2021-04-02 18:07
  */
object Test04ReadCsvThenGroup {

  def main(args: Array[String]): Unit = {

    // 创建一个批处理的执行环境
    val conf = new Configuration()
    conf.setString("taskmanager.numberOfTaskSlots", "3")
    conf.setString("rest.bind-port", "8081")
    conf.setString("parallelism.default", "1")
    val env = ExecutionEnvironment.getExecutionEnvironment
    env.setParallelism(1)

    // 从文件中读取数据
    val inputPath = "/Users/jerry/Tmp/17_pyspark_csv/suicide_clear.csv"
    val inputDs = env.readTextFile(inputPath)


    val result = inputDs
      .filter(line => !line.contains("year,"))
      .map(line => {
        val splits = line.split("\\s*,\\s*")
        Person(splits(0), Integer.parseInt(splits(1)), splits(2), 1)
      }
      )
      .filter(person => {
        person.year == 1987
      })
      .map(person => {
        (person.country, person)
      })
      .groupBy(0)
      .reduce((v1, v2) => {
        v1._2.count = v1._2.count + v2._2.count
        v1
      })
      .map(tuple => tuple._2)

    // 打印输出
    result.print()

    System.in.read()

  }

  case class Person(country: String, year: Int, sex: String, var count: Int) {
  }

}

输出结果如下

相关推荐
踏浪无痕12 分钟前
架构师如何学习 AI:三个月掌握核心能力的务实路径
人工智能·后端·程序员
闲看云起20 分钟前
大模型应用开发框架全景图
人工智能·语言模型·ai编程
万行34 分钟前
机器学习&第三章
人工智能·python·机器学习·数学建模·概率论
木卫四科技36 分钟前
DocETL 入门:让非结构化数据处理变得简单智能
人工智能·木卫四
玖日大大38 分钟前
OceanBase SeekDB:AI 原生数据库的技术革命与实践指南
数据库·人工智能·oceanbase
小润nature40 分钟前
Spec-Driven Development (SDD) 框架与开源 AI 智能体-意图的进化
人工智能·开源
后端小肥肠44 分钟前
复刻10W+爆款视频!我用Coze搭了个“人物故事”自动流水线,太香了!
人工智能·aigc·coze
轻竹办公PPT1 小时前
2026 年工作计划 PPT 内容拆解,对比不同 AI 生成思路
人工智能·python·powerpoint
浔川python社1 小时前
【版本更新提示】浔川 AI 翻译 v6.0 合规优化版已上线
人工智能
清 澜1 小时前
c++高频知识点总结 第 1 章:语言基础与预处理
c++·人工智能·面试