基于RabbitMQ的RPC通信

基于RabbitMQ的RPC通信

当需要调用局域网中的服务时,可以用frp进行穿透,也可以在公网搭建RabbitMQ服务器做消息中转,本文演示了这个步骤。

版本信息

属性
RabbitMQ 3.13.0
pika 1.3.1
python 3.6.8
CPU 2颗 Intel® Xeon® Gold 6248R CPU @ 3.00GHz

操作步骤

搭建RabbitMQ(默认用户名:guest 密码:guest )

bash 复制代码
docker run -d --name rabbitmq -p 5671:5671 -p 5672:5672 -p 4369:4369 \
				-p 25672:25672 -p 15671:15671 -p 15672:15672 rabbitmq:management

服务端实现(srv.py)

python 复制代码
# -*- coding:utf-8 -*-
import pika
import time
import sys
import os

def request_handler(message):
    #content=message.decode('utf-8')
    #print(content)
    return message
    
def on_request(ch, method, props, body):
    response = request_handler(body)
    ch.basic_publish(exchange="",
                     routing_key=props.reply_to,
                     properties=pika.BasicProperties(
                         content_encoding='utf-8',
                         correlation_id=props.correlation_id,
                     ),
                     body=str(response))
    ch.basic_ack(delivery_tag=method.delivery_tag)

while True:
    try:
        credentials = pika.PlainCredentials("guest", "guest")
        connection = pika.BlockingConnection(pika.ConnectionParameters("127.0.0.1",port=5672, credentials=credentials))
        channel = connection.channel()
        channel.queue_declare(queue="rpc_queue")    
        channel.basic_consume("rpc_queue", on_request)
        print(" waiting requests")
        channel.start_consuming()
    except:
        print("error restart")
        pass
    time.sleep(1)

客户端实现(client.py)

python 复制代码
# -*- coding:utf-8 -*-
import os
import io
import time
import uuid
import sys
import requests
import warnings
import numpy as np
import pika
import time
import sys
import traceback
import json
import queue
import uuid
import time
import argparse

class MqRpcClient(object):
    def __init__(self):
        credentials = pika.PlainCredentials("guest", "guest")
        self.connection = pika.BlockingConnection(pika.ConnectionParameters("127.0.0.1",port=5672, credentials=credentials))
        self.channel = self.connection.channel()
        result = self.channel.queue_declare(queue="", exclusive=True)
        self.callback_queue = result.method.queue
        self.channel.basic_consume(self.callback_queue, self.on_response, True)

    def on_response(self, ch, method, props, body):
        if self.corr_id == props.correlation_id:
            self.response = body

    def send(self, message,timeout=5):
        self.response = None
        self.corr_id = str(uuid.uuid4())
        self.channel.basic_publish(exchange="",
                                   routing_key="rpc_queue",
                                   properties=pika.BasicProperties(
                                       reply_to=self.callback_queue,
                                       content_encoding='utf-8',
                                       correlation_id=self.corr_id,
                                   ),
                                   body=message.encode('utf-8')) 
        t0=time.time()
        while self.response is None:
            self.connection.process_data_events()
            t1=time.time()
            if t1-t0>timeout:
                return None
        return self.response

def send_message(message,loop):
    rpc = MqRpcClient()
    t0=time.time()
    for i in range(loop):
        response = rpc.send(message,1)
        if response is None and response==message:
            print("Failed")
            break
    t1=time.time()
    print("qps:{:.2f}".format(loop/(t1-t0)))
    return True

if __name__ == "__main__":
    parse = argparse.ArgumentParser()
    parse.add_argument('--msg', type=str, default='', help='')
    parse.add_argument('--loop', type=int, default=1, help='')
    args = parse.parse_args()
    send_message(args.msg,args.loop)

性能测试(4919 qps)

bash 复制代码
# 安装依赖
pip3 install pika==1.3.1

# 启动服务端(服务端收到请求后,直接回复)
python3 srv.py &

# 客户端多路请求,测试总吞吐
cat <<EOF | tee rpc.sh
for i in \`seq 0 \$1\`
do
  python3 client.py  --msg HelloWorld --loop 1000 &
done
wait
EOF
bash rpc.sh  16 | awk -F: '{SUM+=$2};END{print SUM}'
相关推荐
q***96586 小时前
Spring总结(上)
java·spring·rpc
2501_9411458513 小时前
Go语言高效爬虫开发实战:协程与并发请求代码解析
rabbitmq
2501_9418705617 小时前
Java Spring Boot结合Elasticsearch高性能搜索服务设计与实战经验分享:广州电商商品智能搜索落地
rabbitmq
kong79069281 天前
微服务项目开发环境
微服务·nacos·rabbitmq·开发环境
Bug快跑-11 天前
面向数据密集型应用的Python工程化实践与性能优化策略深度分析与经验分享探索研究篇
rabbitmq
while(努力):进步1 天前
面向移动与云端的Kotlin微服务架构设计与高并发后端性能优化工程化实践经验分享
rabbitmq
debug骑士1 天前
互联网高性能技术系列分享文档(Python / Java / C++ / Go)
rabbitmq
2501_941146701 天前
高并发RPC框架gRPC与Thrift在互联网系统优化实践经验分享
rabbitmq
q***69772 天前
RabbitMQ HAProxy 负载均衡
rabbitmq·负载均衡·ruby
2501_941801762 天前
高性能智能语音识别系统架构设计
rabbitmq