基于RabbitMQ的RPC通信

基于RabbitMQ的RPC通信

当需要调用局域网中的服务时,可以用frp进行穿透,也可以在公网搭建RabbitMQ服务器做消息中转,本文演示了这个步骤。

版本信息

属性
RabbitMQ 3.13.0
pika 1.3.1
python 3.6.8
CPU 2颗 Intel® Xeon® Gold 6248R CPU @ 3.00GHz

操作步骤

搭建RabbitMQ(默认用户名:guest 密码:guest )

bash 复制代码
docker run -d --name rabbitmq -p 5671:5671 -p 5672:5672 -p 4369:4369 \
				-p 25672:25672 -p 15671:15671 -p 15672:15672 rabbitmq:management

服务端实现(srv.py)

python 复制代码
# -*- coding:utf-8 -*-
import pika
import time
import sys
import os

def request_handler(message):
    #content=message.decode('utf-8')
    #print(content)
    return message
    
def on_request(ch, method, props, body):
    response = request_handler(body)
    ch.basic_publish(exchange="",
                     routing_key=props.reply_to,
                     properties=pika.BasicProperties(
                         content_encoding='utf-8',
                         correlation_id=props.correlation_id,
                     ),
                     body=str(response))
    ch.basic_ack(delivery_tag=method.delivery_tag)

while True:
    try:
        credentials = pika.PlainCredentials("guest", "guest")
        connection = pika.BlockingConnection(pika.ConnectionParameters("127.0.0.1",port=5672, credentials=credentials))
        channel = connection.channel()
        channel.queue_declare(queue="rpc_queue")    
        channel.basic_consume("rpc_queue", on_request)
        print(" waiting requests")
        channel.start_consuming()
    except:
        print("error restart")
        pass
    time.sleep(1)

客户端实现(client.py)

python 复制代码
# -*- coding:utf-8 -*-
import os
import io
import time
import uuid
import sys
import requests
import warnings
import numpy as np
import pika
import time
import sys
import traceback
import json
import queue
import uuid
import time
import argparse

class MqRpcClient(object):
    def __init__(self):
        credentials = pika.PlainCredentials("guest", "guest")
        self.connection = pika.BlockingConnection(pika.ConnectionParameters("127.0.0.1",port=5672, credentials=credentials))
        self.channel = self.connection.channel()
        result = self.channel.queue_declare(queue="", exclusive=True)
        self.callback_queue = result.method.queue
        self.channel.basic_consume(self.callback_queue, self.on_response, True)

    def on_response(self, ch, method, props, body):
        if self.corr_id == props.correlation_id:
            self.response = body

    def send(self, message,timeout=5):
        self.response = None
        self.corr_id = str(uuid.uuid4())
        self.channel.basic_publish(exchange="",
                                   routing_key="rpc_queue",
                                   properties=pika.BasicProperties(
                                       reply_to=self.callback_queue,
                                       content_encoding='utf-8',
                                       correlation_id=self.corr_id,
                                   ),
                                   body=message.encode('utf-8')) 
        t0=time.time()
        while self.response is None:
            self.connection.process_data_events()
            t1=time.time()
            if t1-t0>timeout:
                return None
        return self.response

def send_message(message,loop):
    rpc = MqRpcClient()
    t0=time.time()
    for i in range(loop):
        response = rpc.send(message,1)
        if response is None and response==message:
            print("Failed")
            break
    t1=time.time()
    print("qps:{:.2f}".format(loop/(t1-t0)))
    return True

if __name__ == "__main__":
    parse = argparse.ArgumentParser()
    parse.add_argument('--msg', type=str, default='', help='')
    parse.add_argument('--loop', type=int, default=1, help='')
    args = parse.parse_args()
    send_message(args.msg,args.loop)

性能测试(4919 qps)

bash 复制代码
# 安装依赖
pip3 install pika==1.3.1

# 启动服务端(服务端收到请求后,直接回复)
python3 srv.py &

# 客户端多路请求,测试总吞吐
cat <<EOF | tee rpc.sh
for i in \`seq 0 \$1\`
do
  python3 client.py  --msg HelloWorld --loop 1000 &
done
wait
EOF
bash rpc.sh  16 | awk -F: '{SUM+=$2};END{print SUM}'
相关推荐
往事随风去2 天前
架构师必备思维:从“任务队列”到“事件广播”,彻底吃透消息队列两大设计模式
消息队列·rabbitmq
虫小宝3 天前
返利app的消息队列架构:基于RabbitMQ的异步通信与解耦实践
分布式·架构·rabbitmq
无缘之缘3 天前
SpringBoot整合RabbitMQ
spring boot·rabbitmq·java-rabbitmq
葵野寺4 天前
【RelayMQ】基于 Java 实现轻量级消息队列(九)
java·开发语言·rabbitmq·java-rabbitmq
Cxzzzzzzzzzz5 天前
RabbitMQ 在实际开发中的应用场景与实现方案
分布式·rabbitmq
一休哥助手5 天前
Apache Thrift:跨语言服务开发的高性能RPC框架指南
网络协议·rpc·apache
优秀的老黄5 天前
Docker部署RabbitMQ
linux·运维·docker·中间件·容器·centos·rabbitmq
java1234_小锋5 天前
RabbitMQ如何实现消息的持久化?
java·rabbitmq·java-rabbitmq
siriuuus5 天前
Linnux IPC通信和RPC通信实现的方式
rpc·网络通信
波波烤鸭5 天前
Netty 实战应用:从 RPC 到即时通讯,再到 WebSocket
websocket·网络协议·rpc