机器学习:模型评估和模型保存

一、模型评估

python 复制代码
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report

# 使用测试集进行预测
y_pred = model.predict(X_test)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy*100:.2f}%")

# 打印混淆矩阵
conf_matrix = confusion_matrix(y_test, y_pred)
print("Confusion Matrix:")
print(conf_matrix)

# 打印分类报告,包括精确率、召回率和F1分数
class_report = classification_report(y_test, y_pred)
print("Classification Report:")
print(class_report)

二、模型保存

python 复制代码
#使用joblib保存模型
import joblib
joblib.dump(model, "./yorelee_model.pth")
#模型的后缀名是无所谓的

三、后话

模型选择的时候,也可以使用模型融合,即结果由用不同模型的结果按比例得到。

比如pre=(pre_1*a+pre_2*b)/(a+b)。

那么我们在保存模型的时候,这两个模型要一起保存,然后之后训练就导入两个模型,pre这样算出来就行。

python 复制代码
%%time
# 2种模型融合
def model_mix(pred_1, pred_2):
    result = pd.DataFrame(columns=['LinearRegression','XGBRegressor','Combine'])

    for a in range (80):
        for b in range(1,80):
                    y_pred = (a*pred_1 + b*pred_2 ) / (a+b)
                    
                    mse = mean_squared_error(y_test,y_pred)
                    
                    mse = mean_squared_error(y_test,y_pred)
                    new_row = pd.DataFrame([{'LinearRegression':a, 
                                             'XGBRegressor':b, 
                                             'Combine':mse}])
                    result = pd.concat([result, new_row], ignore_index=True)
    return result

linear_predict=model_linear.predict(x_test)
xgb_predict=XGBClassifier.predict(x_test)
model_combine = model_mix(linear_predict,  xgb_predict)

model_combine.sort_values(by='Combine', inplace=True)
model_combine.head()
#各种比例来一份,看看mse最高分,查看 a和b的具体值
相关推荐
code bean6 分钟前
Flask图片服务在不同网络接口下的路径解析问题及解决方案
后端·python·flask
Chasing Aurora25 分钟前
Python后端开发之旅(三)
开发语言·python·langchain·protobuf
普通网友35 分钟前
Bard 的模型压缩技术:在保证性能的前提下如何实现轻量化部署
人工智能·机器学习·bard
捕风捉你1 小时前
【AI转行04】特征工程:治疗 AI 的“学不会”和“想太多”
人工智能·深度学习·机器学习
于越海2 小时前
材料电子理论核心四个基本模型的python编程学习
开发语言·笔记·python·学习·学习方法
中年程序员一枚2 小时前
Springboot报错Template not found For name “java/lang/Object_toString.sql
java·spring boot·python
AI Echoes3 小时前
LangChain 非分割类型的文档转换器使用技巧
人工智能·python·langchain·prompt·agent
程序之巅4 小时前
VS code 远程python代码debug
android·java·python
2501_941878744 小时前
在班加罗尔工程实践中构建可持续演进的机器学习平台体系与技术实现分享
人工智能·机器学习
__如风__4 小时前
onlyoffice文档转换服务离线部署
python