机器学习:模型评估和模型保存

一、模型评估

python 复制代码
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report

# 使用测试集进行预测
y_pred = model.predict(X_test)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy*100:.2f}%")

# 打印混淆矩阵
conf_matrix = confusion_matrix(y_test, y_pred)
print("Confusion Matrix:")
print(conf_matrix)

# 打印分类报告,包括精确率、召回率和F1分数
class_report = classification_report(y_test, y_pred)
print("Classification Report:")
print(class_report)

二、模型保存

python 复制代码
#使用joblib保存模型
import joblib
joblib.dump(model, "./yorelee_model.pth")
#模型的后缀名是无所谓的

三、后话

模型选择的时候,也可以使用模型融合,即结果由用不同模型的结果按比例得到。

比如pre=(pre_1*a+pre_2*b)/(a+b)。

那么我们在保存模型的时候,这两个模型要一起保存,然后之后训练就导入两个模型,pre这样算出来就行。

python 复制代码
%%time
# 2种模型融合
def model_mix(pred_1, pred_2):
    result = pd.DataFrame(columns=['LinearRegression','XGBRegressor','Combine'])

    for a in range (80):
        for b in range(1,80):
                    y_pred = (a*pred_1 + b*pred_2 ) / (a+b)
                    
                    mse = mean_squared_error(y_test,y_pred)
                    
                    mse = mean_squared_error(y_test,y_pred)
                    new_row = pd.DataFrame([{'LinearRegression':a, 
                                             'XGBRegressor':b, 
                                             'Combine':mse}])
                    result = pd.concat([result, new_row], ignore_index=True)
    return result

linear_predict=model_linear.predict(x_test)
xgb_predict=XGBClassifier.predict(x_test)
model_combine = model_mix(linear_predict,  xgb_predict)

model_combine.sort_values(by='Combine', inplace=True)
model_combine.head()
#各种比例来一份,看看mse最高分,查看 a和b的具体值
相关推荐
盈电智控20 分钟前
体力劳动反而更难被AI取代?物联网科技如何守护最后的劳动阵地
开发语言·人工智能·python
隔壁阿布都22 分钟前
Spring Boot中的Optional如何使用
开发语言·spring boot·python
谢景行^顾1 小时前
深度学习--激活函数
人工智能·python·机器学习
三千院本院1 小时前
LlaMA_Factory实战微调Qwen-LLM大模型
人工智能·python·深度学习·llama
wljt1 小时前
Linux 常用命令速查手册(Java开发版)
java·linux·python
WPG大大通1 小时前
AIoT | 软件:Astra MCP边缘算力构建详解
经验分享·笔记·python·硬件架构·代码
波诺波1 小时前
环境管理器
linux·前端·python
诸葛思颖1 小时前
把本地 Python 项目用 Git 进行版本控制并推送到 GitHub
git·python·github
测试老哥1 小时前
自动化测试用例的编写和管理
自动化测试·软件测试·python·功能测试·测试工具·职场和发展·测试用例
周杰伦_Jay2 小时前
【Python Web开源框架】Django/Flask/FastAPI/Tornado/Pyramid
前端·python·开源