机器学习:模型评估和模型保存

一、模型评估

python 复制代码
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report

# 使用测试集进行预测
y_pred = model.predict(X_test)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy*100:.2f}%")

# 打印混淆矩阵
conf_matrix = confusion_matrix(y_test, y_pred)
print("Confusion Matrix:")
print(conf_matrix)

# 打印分类报告,包括精确率、召回率和F1分数
class_report = classification_report(y_test, y_pred)
print("Classification Report:")
print(class_report)

二、模型保存

python 复制代码
#使用joblib保存模型
import joblib
joblib.dump(model, "./yorelee_model.pth")
#模型的后缀名是无所谓的

三、后话

模型选择的时候,也可以使用模型融合,即结果由用不同模型的结果按比例得到。

比如pre=(pre_1*a+pre_2*b)/(a+b)。

那么我们在保存模型的时候,这两个模型要一起保存,然后之后训练就导入两个模型,pre这样算出来就行。

python 复制代码
%%time
# 2种模型融合
def model_mix(pred_1, pred_2):
    result = pd.DataFrame(columns=['LinearRegression','XGBRegressor','Combine'])

    for a in range (80):
        for b in range(1,80):
                    y_pred = (a*pred_1 + b*pred_2 ) / (a+b)
                    
                    mse = mean_squared_error(y_test,y_pred)
                    
                    mse = mean_squared_error(y_test,y_pred)
                    new_row = pd.DataFrame([{'LinearRegression':a, 
                                             'XGBRegressor':b, 
                                             'Combine':mse}])
                    result = pd.concat([result, new_row], ignore_index=True)
    return result

linear_predict=model_linear.predict(x_test)
xgb_predict=XGBClassifier.predict(x_test)
model_combine = model_mix(linear_predict,  xgb_predict)

model_combine.sort_values(by='Combine', inplace=True)
model_combine.head()
#各种比例来一份,看看mse最高分,查看 a和b的具体值
相关推荐
我是中国人哦(⊙o⊙)36 分钟前
我的寒假作业
人工智能·算法·机器学习
zchxzl1 小时前
亲测2026京津冀专业广告展会
大数据·人工智能·python
~央千澈~1 小时前
抖音弹幕游戏开发之第19集:课程总结与答疑·优雅草云桧·卓伊凡
python·pygame
小雨中_2 小时前
3.5 ReMax:用 Greedy 作为基线的 REINFORCE + RLOO
人工智能·python·深度学习·机器学习·自然语言处理
overmind2 小时前
oeasy Python 116 用列表乱序shuffle来洗牌抓拍玩升级拖拉机
服务器·windows·python
A懿轩A3 小时前
【Java 基础编程】Java 枚举与注解从零到一:Enum 用法 + 常用注解 + 自定义注解实战
java·开发语言·python
DeepModel3 小时前
【回归算法】Ridge回归详解
深度学习·机器学习·回归算法
SmartBrain3 小时前
FastAPI实战(第二部分):用户注册接口开发详解
数据库·人工智能·python·fastapi
lisw053 小时前
云原生技术概述!
人工智能·机器学习·云原生
开发者导航3 小时前
【开发者导航】多功能生成模型开发工具:Diffusers 详细介绍
人工智能·python·学习·macos·信息可视化