机器学习:模型评估和模型保存

一、模型评估

python 复制代码
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report

# 使用测试集进行预测
y_pred = model.predict(X_test)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy*100:.2f}%")

# 打印混淆矩阵
conf_matrix = confusion_matrix(y_test, y_pred)
print("Confusion Matrix:")
print(conf_matrix)

# 打印分类报告,包括精确率、召回率和F1分数
class_report = classification_report(y_test, y_pred)
print("Classification Report:")
print(class_report)

二、模型保存

python 复制代码
#使用joblib保存模型
import joblib
joblib.dump(model, "./yorelee_model.pth")
#模型的后缀名是无所谓的

三、后话

模型选择的时候,也可以使用模型融合,即结果由用不同模型的结果按比例得到。

比如pre=(pre_1*a+pre_2*b)/(a+b)。

那么我们在保存模型的时候,这两个模型要一起保存,然后之后训练就导入两个模型,pre这样算出来就行。

python 复制代码
%%time
# 2种模型融合
def model_mix(pred_1, pred_2):
    result = pd.DataFrame(columns=['LinearRegression','XGBRegressor','Combine'])

    for a in range (80):
        for b in range(1,80):
                    y_pred = (a*pred_1 + b*pred_2 ) / (a+b)
                    
                    mse = mean_squared_error(y_test,y_pred)
                    
                    mse = mean_squared_error(y_test,y_pred)
                    new_row = pd.DataFrame([{'LinearRegression':a, 
                                             'XGBRegressor':b, 
                                             'Combine':mse}])
                    result = pd.concat([result, new_row], ignore_index=True)
    return result

linear_predict=model_linear.predict(x_test)
xgb_predict=XGBClassifier.predict(x_test)
model_combine = model_mix(linear_predict,  xgb_predict)

model_combine.sort_values(by='Combine', inplace=True)
model_combine.head()
#各种比例来一份,看看mse最高分,查看 a和b的具体值
相关推荐
烛阴1 小时前
武装你的Python“工具箱”:盘点10个你必须熟练掌握的核心方法
前端·python
lisw051 小时前
SolidWorks:现代工程设计与数字制造的核心平台
人工智能·机器学习·青少年编程·软件工程·制造
学Linux的语莫1 小时前
机器学习数据处理
java·算法·机器学习
杨枝甘露小码2 小时前
Python学习之基础篇
开发语言·python
我是华为OD~HR~栗栗呀2 小时前
23届考研-Java面经(华为OD)
java·c++·python·华为od·华为·面试
递归不收敛3 小时前
吴恩达机器学习课程(PyTorch适配)学习笔记:1.3 特征工程与模型优化
pytorch·学习·机器学习
小蕾Java3 小时前
PyCharm 软件使用各种问题 ,解决教程
ide·python·pycharm
Lucky_Turtle3 小时前
【PyCharm】设置注释风格,快速注释
python
kunge1v53 小时前
学习爬虫第四天:多任务爬虫
爬虫·python·学习·beautifulsoup
萧鼎3 小时前
Python schedule 库全解析:从任务调度到自动化执行的完整指南
网络·python·自动化