李沐动手学习深度学习——3.7练习

尝试调整超参数,例如批量大小、迭代周期数和学习率,并查看结果。

  1. num_epochs = 10, batch_size = 256, lr = 0.1情况下

  2. num_epochs = 5, batch_size = 256, lr = 0.1情况下

    可以尝试一下,三种参数变化,会发现lr变小,需要的训练次数num_epochs增加,batch_size变小。

增加迭代周期的数量。为什么测试精度会在一段时间后降低?我们怎么解决这个问题?

因为过拟合问题,模型过于拟合训练集数据了,应对测试集与训练集存在一些不同的数据识别不出来。

  1. 降低num_epochs
  2. 数据增强,对于输入数据加一点噪声
  3. 降低模型复杂度,减少神经元
相关推荐
浪子小院8 分钟前
ModelEngine 智能体全流程开发实战:从 0 到 1 搭建多协作办公助手
大数据·人工智能
程序员打怪兽11 分钟前
详解YOLOv8网络结构
人工智能·深度学习
Yuer202511 分钟前
全国首例“AI 幻觉”侵权案判了:这不是 AI 准不准的问题,而是谁该为 AI 负责
人工智能·edca os·可控ai
一切尽在,你来27 分钟前
1.1 AI大模型应用开发和Langchain的关系
人工智能·langchain
Coder_Boy_34 分钟前
基于Spring AI的分布式在线考试系统-事件处理架构实现方案
人工智能·spring boot·分布式·spring
wdfk_prog1 小时前
[Linux]学习笔记系列 -- [drivers][input]serio
linux·笔记·学习
Light601 小时前
智链未来:彭山物流园区从物理基建到数据智能体的全维度构建方案
人工智能·系统架构·数字孪生·智慧物流·实施路径·彭山项目
AI资源库1 小时前
GLM-4.7-Flash模型深入解析
人工智能·语言模型
一切尽在,你来1 小时前
1.2 LangChain 1.2.7 版本核心特性与升级点
人工智能·langchain
LYFlied1 小时前
AI大时代下前端跨端解决方案的现状与演进路径
前端·人工智能