李沐动手学习深度学习——3.7练习

尝试调整超参数,例如批量大小、迭代周期数和学习率,并查看结果。

  1. num_epochs = 10, batch_size = 256, lr = 0.1情况下

  2. num_epochs = 5, batch_size = 256, lr = 0.1情况下

    可以尝试一下,三种参数变化,会发现lr变小,需要的训练次数num_epochs增加,batch_size变小。

增加迭代周期的数量。为什么测试精度会在一段时间后降低?我们怎么解决这个问题?

因为过拟合问题,模型过于拟合训练集数据了,应对测试集与训练集存在一些不同的数据识别不出来。

  1. 降低num_epochs
  2. 数据增强,对于输入数据加一点噪声
  3. 降低模型复杂度,减少神经元
相关推荐
海洲探索-Hydrovo2 小时前
TTP Aether X 天通透传模块丨国产自主可控大数据双向通讯定位模组
网络·人工智能·科技·算法·信息与通信
触想工业平板电脑一体机2 小时前
【触想智能】工业安卓一体机在人工智能领域上的市场应用分析
android·人工智能·智能电视
墨染天姬3 小时前
【AI】数学基础之矩阵
人工智能·线性代数·矩阵
谷歌开发者4 小时前
Web 开发指向标 | Chrome 开发者工具学习资源 (一)
前端·chrome·学习
2401_841495645 小时前
【计算机视觉】基于复杂环境下的车牌识别
人工智能·python·算法·计算机视觉·去噪·车牌识别·字符识别
zhangjipinggom5 小时前
multi-head attention 多头注意力实现细节
深度学习
倔强青铜三5 小时前
苦练Python第66天:文件操作终极武器!shutil模块完全指南
人工智能·python·面试
倔强青铜三5 小时前
苦练Python第65天:CPU密集型任务救星!多进程multiprocessing模块实战解析,攻破GIL限制!
人工智能·python·面试
强哥之神6 小时前
浅谈目前主流的LLM软件技术栈:Kubernetes + Ray + PyTorch + vLLM 的协同架构
人工智能·语言模型·自然语言处理·transformer·openai·ray
zskj_qcxjqr6 小时前
七彩喜艾灸机器人:当千年中医智慧遇上现代科技
大数据·人工智能·科技·机器人