只需三步,手把手带你在本地部署运行大模型

在当前的技术环境下,大型语言模型(LLMs)已经成为人工智能领域的一个重要里程碑。这些模型能够在各种任务上展现出人类水平的性能,包括但不限于文本生成、语言理解和问题解答。随着开源项目的发展,个人开发者现在有机会在本地部署这些强大的模型,以探索和利用它们的潜力。本文将详细介绍如何使用Ollama,一个开源项目,在Mac上本地运行大型模型(Win同理)。通过遵循以下步骤,即使是配备了几年前硬件的电脑,也能够顺利完成部署和运行。

开源项目ollama:github链接

第一步:下载和安装Ollama

  • 下载完成后,双击解压软件,您将看到应用安装界面,如下图所示::

第二步:下载模型并运行 mistral-7b 大模型

  • 打开终端,输入命令ollama run mistral以启动Ollama并下载所需的大型模型,下图显示了mistral-7b模型的下载过程,
  • 下载完成后,您可以像下图所示运行Ollama,并询问例如"why sky id blue?"的问题,以测试模型的响应:

第三步:设置前端界面和Docker环境

perl 复制代码
git clone https://github.com/open-webui/open-webui.git
  • 使用以下命令下载并运行Docker镜像,为Ollama设置一个前端界面:
kotlin 复制代码
cd open-webui
docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main
  • 打开浏览器,输入网址http://localhost:3000/,选择您刚下载的模型mistral:latest (3.8GB),即可开始探索大型模型的强大功能。

此外,对于那些关注电脑配置的用户,以下是一个配置示例,表明即使是老旧的电脑也能够运行这些大型模型,本指南使用的电脑配置如图

通过遵循这个指南,任何拥有基本计算机技能的用户都可以在本地部署和运行大型模型,进一步探索人工智能的前沿技术。这不仅为开发者提供了一个实验和学习的平台,也为研究人员和爱好者提供了一个探索AI模型潜力的机会。

相关推荐
星融元asterfusion2 分钟前
突破AI瓶颈:基于实时感知的智能选路实现智算负载均衡优化
运维·人工智能·负载均衡
聚客AI7 分钟前
Masked LM革命:解析BERT如何用15%掩码率颠覆NLP预训练
人工智能·llm·掘金·日新计划
何玺16 分钟前
从Pura 80系列影像和鸿蒙AI融合看华为创新的“不可复制性”
人工智能·华为·harmonyos
仙人掌_lz1 小时前
AI与机器学习ML:利用Python 从零实现神经网络
人工智能·python·机器学习
我感觉。1 小时前
【医疗电子技术-7.2】血糖监测技术
人工智能·医疗电子
DeepSeek忠实粉丝1 小时前
微调篇--超长文本微调训练
人工智能·程序员·llm
XiaoQiong.Zhang1 小时前
简历模板3——数据挖掘工程师5年经验
大数据·人工智能·机器学习·数据挖掘
Akamai中国1 小时前
为何AI推理正推动云计算从集中式向分布式转型
人工智能·云原生·云计算·边缘计算
oil欧哟1 小时前
🧐 如何让 AI 接入自己的 API?开发了一个将 OpenAPI 文档转为 MCP 服务的工具
前端·人工智能·mcp
whoarethenext2 小时前
C++/OpenCV地砖识别系统结合 Libevent 实现网络化 AI 接入
c++·人工智能·opencv