深度学习-CNN网络改进版LetNet5

深度学习-CNN网络改进版LetNet5

深度学习中,经典网络引领一波又一波的技术革命,从LetNet到当前最火的GPT所用的Transformer,它们把AI技术不断推向高潮。

用pytorch构建CNN经典网络模型改进版LetNet5,还可以用数据进行训练模型,得到一个优化的模型。

数据分析

数据分析-Pandas如何转换产生新列

数据分析-Pandas如何统计数据概况

数据分析-Pandas如何轻松处理时间序列数据

数据分析-Pandas如何选择数据子集

数据分析-Pandas如何重塑数据表-CSDN博客

经典算法

经典算法-遗传算法的python实现

经典算法-模拟退火算法的python实现

经典算法-粒子群算法的python实现-CSDN博客

LeNet5概述

LeNet诞生后,于1998年改进版本LeNet5,在LeNet初期版本上迭代进化而来。卷积核大小为5x5。

网络结构

输入图像分辨率:32x32 单通道

结构:

7层(不含输入),包括3层卷积层,2层池化层,2层全连接层

(1)卷积层1:5x5 --->输出6个28×28大小的特征图;

(2)池化层1:平均池化层 2x2;

(3)卷积层2:5x5 --->输出16个10x10大小的特征图;

(4)池化层2:2x2

(5)卷积层3:5x5 --->输出120个1x1大小的特征图;

(6)全连接层1 ----> 输出84特征;

(7)全连接层2 ----> 输出

优势与不足

优势:采用CNN自动提取特征,具备卷积神经网络的雏形,网络层级由5层增加为7层,图像尺寸由28x28扩大32x32。

不足:使用了平均池化,一般而言,不如Max-Pooling提取特征具有分类辨识度。

Pytorch实现

以下便是使用Pytorch实现的经典网络结构LeNet5

python 复制代码
class LeNet5(nn.Module):
    def __init__(self, num_classes, grayscale=False): 
        """
        num_classes: 分类的数量
        grayscale:是否为灰度图
        """
        super(LeNet5, self).__init__()

        self.grayscale = grayscale
        self.num_classes = num_classes

        if self.grayscale: # 可以适用单通道和三通道的图像
            in_channels = 1
        else:
            in_channels = 3

        # 卷积神经网络
        self.features = nn.Sequential(
            nn.Conv2d(in_channels, 6, kernel_size=5),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2),
            nn.Conv2d(6, 16, kernel_size=5),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2)   # 原始的模型使用的是 平均池化
        )
        # 分类器
        self.classifier = nn.Sequential(
            nn.Linear(16*5*5, 120),  # 这里把第三个卷积当作是全连接层了
            nn.ReLU(),
            nn.Linear(120, 84), 
            nn.ReLU(),
            nn.Linear(84, num_classes)
        )

    def forward(self, x):
        x = self.features(x) # 输出 16*5*5 特征图
        x = torch.flatten(x, 1) # 展平 (1, 16*5*5)
        logits = self.classifier(x) # 输出 10
        probas = F.softmax(logits, dim=1)
        return logits, probas

大家可以和LetNet对照差异,也可以一窥DeepLearning技术的突破点。

后来CNN网络结构不断发展,为深度学习在计算机视觉的蓬勃发展奠定基础。

觉得有用 收藏 收藏 收藏

点个赞 点个赞 点个赞

End

GPT专栏文章:

GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案

GPT实战系列-LangChain + ChatGLM3构建天气查询助手

大模型查询工具助手之股票免费查询接口

GPT实战系列-简单聊聊LangChain

GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(二)

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(一)

GPT实战系列-ChatGLM2模型的微调训练参数解读

GPT实战系列-如何用自己数据微调ChatGLM2模型训练

GPT实战系列-ChatGLM2部署Ubuntu+Cuda11+显存24G实战方案

GPT实战系列-Baichuan2本地化部署实战方案

GPT实战系列-Baichuan2等大模型的计算精度与量化

GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF

GPT实战系列-探究GPT等大模型的文本生成-CSDN博客

相关推荐
一水鉴天20 分钟前
为AI聊天工具添加一个知识系统 之65 详细设计 之6 变形机器人及伺服跟随
人工智能
m0_743106463 小时前
【论文笔记】MV-DUSt3R+:两秒重建一个3D场景
论文阅读·深度学习·计算机视觉·3d·几何学
m0_743106463 小时前
【论文笔记】TranSplat:深度refine的camera-required可泛化稀疏方法
论文阅读·深度学习·计算机视觉·3d·几何学
井底哇哇6 小时前
ChatGPT是强人工智能吗?
人工智能·chatgpt
Coovally AI模型快速验证6 小时前
MMYOLO:打破单一模式限制,多模态目标检测的革命性突破!
人工智能·算法·yolo·目标检测·机器学习·计算机视觉·目标跟踪
AI浩7 小时前
【面试总结】FFN(前馈神经网络)在Transformer模型中先升维再降维的原因
人工智能·深度学习·计算机视觉·transformer
可为测控7 小时前
图像处理基础(4):高斯滤波器详解
人工智能·算法·计算机视觉
一水鉴天7 小时前
为AI聊天工具添加一个知识系统 之63 详细设计 之4:AI操作系统 之2 智能合约
开发语言·人工智能·python
倔强的石头1068 小时前
解锁辅助驾驶新境界:基于昇腾 AI 异构计算架构 CANN 的应用探秘
人工智能·架构
佛州小李哥8 小时前
Agent群舞,在亚马逊云科技搭建数字营销多代理(Multi-Agent)(下篇)
人工智能·科技·ai·语言模型·云计算·aws·亚马逊云科技