(2)稳定性 :假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次 序保持不变,即在原序列中, r [ i ] = r [ j ],且 r [ i ] 在 r [ j ] 之前,而在排序后的序列中, r [ i ] 仍在 r [ j ]之前,则称这种排序算法是稳定的;否则称为不稳定的。
// 平均O(N^1.3)
void ShellSort(int* a, int n)
{
int gap = n;
// gap > 1时是预排序,目的让他接近有序
// gap == 1是直接插入排序,目的是让他有序
while (gap > 1)
{
//gap = gap / 2;
gap = gap / 3 + 1;
for (int i = 0; i < n - gap; ++i)
{
int end = i;
int tmp = a[end + gap];
while (end >= 0)
{
if (tmp < a[end])
{
a[end + gap] = a[end];
end -= gap;
}
else
{
break;
}
}
a[end + gap] = tmp;
}
}
希尔排序的特性总结:
希尔排序是对直接插入排序的优化。
当 gap > 1 时都是预排序,目的是让数组更接近于有序。当 gap == 1 时,数组已经接近有序的了,这样就会很快。这样整体而言,可以达到优化的效果。我们实现后可以进行性能测试的对比。
希尔排序的时间复杂度不好计算,因为 gap 的取值方法很多,导致很难去计算,因此在好些书中给出的希尔排序的时间复杂度都不固定: 《数据结构(C语言版)》---严蔚敏
// 时间复杂度:O(N^2)
// 最好的情况下:O(N^2)
void SelectSort(int* a, int n)
{
int begin = 0, end = n - 1;
while (begin < end)
{
int mini = begin, maxi = begin;
for (int i = begin + 1; i <= end; ++i)
{
if (a[i] < a[mini])
{
mini = i;
}
if (a[i] > a[maxi])
{
maxi = i;
}
}
Swap(&a[begin], &a[mini]);
if (maxi == begin)
{
maxi = mini;
}
Swap(&a[end], &a[maxi]);
++begin;
--end;
}
}
int PartSort1(int* a, int begin, int end)
{
int midi = GetMidi(a, begin, end);
Swap(&a[midi], &a[begin]);
int left = begin, right = end;
int keyi = begin;
while (left < right)
{
// 右边找小
while (left < right && a[right] >= a[keyi])
{
--right;
}
// 左边找大
while (left < right && a[left] <= a[keyi])
{
++left;
}
Swap(&a[left], &a[right]);
}
Swap(&a[left], &a[keyi]);
return left;
}
void QuickSort(int* a, int begin, int end)
{
if (begin >= end)
return;
int keyi = PartSort1(a, begin, end);
QuickSort(a, begin, keyi - 1);
QuickSort(a, keyi+1, end);
}
2. 挖坑法
代码案例:
cpp复制代码
// 挖坑法
int PartSort2(int* a, int begin, int end)
{
int midi = GetMidi(a, begin, end);
Swap(&a[midi], &a[begin]);
int key = a[begin];
int hole = begin;
while (begin < end)
{
// 右边找小,填到左边的坑
while (begin < end && a[end] >= key)
{
--end;
}
a[hole] = a[end];
hole = end;
// 左边找大,填到右边的坑
while (begin < end && a[begin] <= key)
{
++begin;
}
a[hole] = a[begin];
hole = begin;
}
a[hole] = key;
return hole;
}
void QuickSort(int* a, int begin, int end)
{
if (begin >= end)
return;
int keyi = PartSort2(a, begin, end);
QuickSort(a, begin, keyi - 1);
QuickSort(a, keyi+1, end);
}
3. 前后指针版本
代码案例:
cpp复制代码
int PartSort3(int* a, int begin, int end)
{
int midi = GetMidi(a, begin, end);
Swap(&a[midi], &a[begin]);
int keyi = begin;
int prev = begin;
int cur = prev + 1;
while (cur <= end)
{
if (a[cur] < a[keyi] && ++prev != cur)
Swap(&a[prev], &a[cur]);
++cur;
}
Swap(&a[prev], &a[keyi]);
keyi = prev;
return keyi;
}
void QuickSort(int* a, int begin, int end)
{
if (begin >= end)
return;
int keyi = PartSort3(a, begin, end);
QuickSort(a, begin, keyi - 1);
QuickSort(a, keyi+1, end);
}
2.3.2****快速排序优化
三数取中法选 key
递归到小的子区间时,可以考虑使用插入排序
2.3.3****快速排序非递归
代码案例:
cpp复制代码
void QuickSortNonR(int* a, int left, int right)
{
Stack st;
StackInit(&st);
StackPush(&st, left);
StackPush(&st, right);
while (StackEmpty(&st) != 0)
{
right = StackTop(&st);
StackPop(&st);
left = StackTop(&st);
StackPop(&st);
if(right - left <= 1)
continue;
int div = PartSort1(a, left, right);
// 以基准值为分割点,形成左右两部分:[left, div) 和 [div+1, right)
StackPush(&st, div+1);
StackPush(&st, right);
StackPush(&st, left);
StackPush(&st, div);
}
StackDestroy(&s);
}
快速排序的特性总结:
快速排序整体的综合性能和使用场景都是比较好的,所以才敢叫 快速 排序
时间复杂度: O(N*logN)
空间复杂度: O(logN)
稳定性:不稳定
2.4****归并排序
基本思想:
归并排序(MERGE-SORT )是建立在归并操作上的一种有效的排序算法 , 该算法是采用分治法( Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。 归并排序核心步骤:
代码案例:
cpp复制代码
void _MergeSort(int* a, int begin, int end, int* tmp)
{
if (begin >= end)
return;
int mid = (begin + end) / 2;
// [begin, mid][mid+1, end]
_MergeSort(a, begin, mid, tmp);
_MergeSort(a, mid+1, end, tmp);
// [begin, mid][mid+1, end]归并
int begin1 = begin, end1 = mid;
int begin2 = mid + 1, end2 = end;
int i = begin;
while (begin1 <= end1 && begin2 <= end2)
{
if (a[begin1] < a[begin2])
{
tmp[i++] = a[begin1++];
}
else
{
tmp[i++] = a[begin2++];
}
}
while(begin1 <= end1)
{
tmp[i++] = a[begin1++];
}
while (begin2 <= end2)
{
tmp[i++] = a[begin2++];
}
memcpy(a + begin, tmp + begin, sizeof(int) * (end - begin + 1));
}
void MergeSort(int* a, int n)
{
int* tmp = (int*)malloc(sizeof(int) * n);
if (tmp == NULL)
{
perror("malloc fail");
return;
}
_MergeSort(a, 0, n - 1, tmp);
free(tmp);
}
//非递归法
void MergeSortNonR(int* a, int n)
{
int* tmp = (int*)malloc(sizeof(int) * n);
if (tmp == NULL)
{
perror("malloc fail");
return;
}
int gap = 1;
while (gap < n)
{
printf("gap:%2d->", gap);
for (size_t i = 0; i < n; i += 2 * gap)
{
int begin1 = i, end1 = i + gap - 1;
int begin2 = i + gap, end2 = i + 2 * gap - 1;
// [begin1, end1][begin2, end2] 归并
//printf("[%2d,%2d][%2d, %2d] ", begin1, end1, begin2, end2);
// 边界的处理
if (end1 >= n || begin2 >= n)
{
break;
}
if (end2 >= n)
{
end2 = n - 1;
}
//printf("[%2d,%2d][%2d, %2d] ", begin1, end1, begin2, end2);
int j = begin1;
while (begin1 <= end1 && begin2 <= end2)
{
if (a[begin1] < a[begin2])
{
tmp[j++] = a[begin1++];
}
else
{
tmp[j++] = a[begin2++];
}
}
while (begin1 <= end1)
{
tmp[j++] = a[begin1++];
}
while (begin2 <= end2)
{
tmp[j++] = a[begin2++];
}
memcpy(a + i, tmp + i, sizeof(int) * (end2-i+1));
}
printf("\n");
gap *= 2;
}
free(tmp);
}
归并排序的特性总结:
归并的缺点在于需要 O(N) 的空间复杂度,归并排序的思考更多的是解决在磁盘中的外排序问题。
时间复杂度: O(N*logN)
空间复杂度: O(N)
稳定性:稳定
2.5****非比较排序
思想:计数排序又称为鸽巢原理,是对哈希直接定址法的变形应用。 操作步骤:
统计相同元素出现次数
根据统计的结果将序列回收到原来的序列中
代码案例:
cpp复制代码
// 基数排序/桶排序
// 计数排序
// 时间:O(N+range)
// 空间:O(range)
void CountSort(int* a, int n)
{
int min = a[0], max = a[0];
for (int i = 1; i < n; i++)
{
if (a[i] < min)
min = a[i];
if (a[i] > max)
max = a[i];
}
int range = max - min + 1;
int* count = (int*)calloc(range, sizeof(int));
if (count == NULL)
{
printf("calloc fail\n");
return;
}
// 统计次数
for (int i = 0; i < n; i++)
{
count[a[i] - min]++;
}
// 排序
int i = 0;
for (int j = 0; j < range; j++)
{
while (count[j]--)
{
a[i++] = j + min;
}
}
}