二、TensorFlow结构分析(2)

目录

1、会话

[1.1 init(target='',graph=None,config=None)](#1.1 init(target='',graph=None,config=None))

[1.2 会话的run()](#1.2 会话的run())

[1.3 feed操作](#1.3 feed操作)


  • TF数据流图
  • 图与TensorBoard
  • 会话
  • 张量
  • 变量OP
  • 高级API

1、会话

1.1 init(target='',graph=None,config=None)

python 复制代码
def session_demo():
    # 会话的演示
    # Tensorflow实现加法运算
    a_t = tf.constant(2)
    b_t = tf.constant(3)
    c_t = a_t + b_t
    print("tensorflow:\n", c_t)

    # 查看默认图
    # 方法1:调用方法
    default_g = tf.get_default_graph()
    # default_g =tf.compat.v1.get_default_graph
    print("default:\n", default_g)
    # 方法2:查看属性
    print("a_t的图属性:\n", a_t.graph)
    print("c_t的图属性:\n", c_t.graph)

    # 开启会话
    with tf.Session(config=tf.ConfigProto(allow_soft_placement=True,
                                          log_device_placcement=True)) as sess:
        c_t_value = sess.run(c_t)
        print("c_t_value:\n", c_t_value)
        print("sess的图属性:\n", sess.graph)
        # 将图写入本地生成events文件
        tf.summary.FileWriter("./tmp/summary",graph=sess.graph)

    return None

1.2 会话的run()

python 复制代码
# 同时查看a_t,b_t,c_t
abc = sess.run([a_t,b_t,c_t])

1.3 feed操作

相关推荐
后端小肥肠1 分钟前
文案号搞钱潜规则:日入四位数的Coze工作流我跑通了
人工智能·coze
LCHub低代码社区3 分钟前
钧瓷产业原始创新的许昌共识:技术破壁·产业再造·生态重构(一)
大数据·人工智能·维格云·ai智能体·ai自动化·大禹智库·钧瓷码
-曾牛3 分钟前
Spring AI 快速入门:从环境搭建到核心组件集成
java·人工智能·spring·ai·大模型·spring ai·开发环境搭建
阿川20157 分钟前
云智融合普惠大模型AI,政务服务重构数智化路径
人工智能·华为云·政务·deepseek
自由鬼35 分钟前
开源AI开发工具:OpenAI Codex CLI
人工智能·ai·开源·软件构建·开源软件·个人开发
生信碱移42 分钟前
大语言模型时代,单细胞注释也需要集思广益(mLLMCelltype)
人工智能·经验分享·深度学习·语言模型·自然语言处理·数据挖掘·数据可视化
一个数据大开发1 小时前
解读《数据资产质量评估实施规则》:企业数据资产认证落地的关键指南
大数据·数据库·人工智能
云卓SKYDROID1 小时前
无人机环境适应性与稳定性技术要点!
人工智能·无人机·科普·高科技·云卓科技
硅谷秋水1 小时前
通过模仿学习实现机器人灵巧操作:综述(上)
人工智能·深度学习·机器学习·计算机视觉·语言模型·机器人
开心快乐幸福一家人1 小时前
Spark-SQL与Hive集成及数据分析实践
人工智能·pytorch·深度学习