[C++]使用纯opencv去部署yolov9的onnx模型

【介绍】

部署 YOLOv9 ONNX 模型在 OpenCV 的 C++ 环境中涉及一系列步骤。以下是一个简化的部署方案概述,以及相关的文案。

部署方案概述:

  1. 模型准备:首先,你需要确保你有 YOLOv9 的 ONNX 模型文件。这个文件包含了模型的结构和权重。
  2. 环境配置:安装 OpenCV 库,并确保它支持 ONNX 模型的加载和推理。
  3. 加载模型 :使用 OpenCV 的 cv::dnn::readNetFromONNX 函数加载模型。这个函数会读取模型文件,并创建一个可以用于推理的网络对象。
  4. 预处理输入:YOLO 模型通常需要特定格式的输入数据,如特定大小的图像。你需要编写代码来读取原始图像,将其转换为模型所需的格式,并可能需要进行归一化或其他预处理步骤。
  5. 执行推理 :将预处理后的输入数据传递给网络对象,执行推理。这通常是通过调用 cv::dnn::Net::forward 函数来完成的。
  6. 后处理输出:模型的输出通常是一个或多个张量,需要后处理才能得到最终的检测结果。这可能涉及解析输出张量,提取边界框、类别和置信度等信息。
  7. 显示结果:最后,你可以使用 OpenCV 的绘图功能在原始图像上显示检测结果。

文案示例:

"在现代计算机视觉应用中,部署高效的目标检测模型至关重要。使用 OpenCV 的 C++ 接口,我们可以轻松加载和部署 YOLOv9 ONNX 模型,实现实时的目标检测。通过准备模型文件、配置开发环境、加载模型、预处理输入数据、执行推理和后处理输出,我们可以在各种应用场景中快速集成 YOLOv9 的强大功能。无论是安全监控、自动驾驶还是智能家居,YOLOv9 与 OpenCV 的结合都为我们提供了强大的工具来检测和识别图像中的目标。"

【效果演示】

【视频演示】

C++使用纯opencv部署yolov9的onnx模型_哔哩哔哩_bilibili使用C++ opencv去部署yolov9的onnx模型,无其他依赖。测试环境vs2019opencv==4.9.0cmake==3.24.3, 视频播放量 128、弹幕量 0、点赞数 2、投硬币枚数 0、收藏人数 0、转发人数 0, 视频作者 未来自主研究中心, 作者简介 未来自主研究中心,相关视频:C#使用onnxruntime部署Detic检测2万1千种类别的物体,使用纯opencv部署yolov5目标检测模型onnx,刘宪华巴黎粉丝路透,和老板在一起的时刻,满满的幸福感!,好几个朋友跟我说,这车进不了藏,2024易语言yolo9全网最强框架更新~,【爱心表白代码】身边学编程的朋友还没给你安排上这个爱心代码吗?赶快给她敲一个吧!!,yolov9+deepsort+pyqt5实现目标追踪结果演示,C#利用openvino部署yolov8-onnx目标检测模型,不需要训练?YOLO-World:实时开放词汇目标检测,2024年B站最强OpenCV实战进阶教程!,一周学完帮你少走99%弯路!【图像分割/人脸识别/车辆检测/机器视觉】https://www.bilibili.com/video/BV1Wt421t79e/

【部分实现代码】

#include <iostream>
#include<opencv2/opencv.hpp>

#include<math.h>
#include "yolov9.h"
#include<time.h>

using namespace std;
using namespace cv;
using namespace dnn;

template<typename _Tp>
int yolov9(_Tp& cls,Mat& img,string& model_path)
{

	Net net;
	if (cls.ReadModel(net, model_path, false)) {
		cout << "read net ok!" << endl;
	}
	else {
		return -1;
	}
	//生成随机颜色
	vector<Scalar> color;
	srand(time(0));
	for (int i = 0; i < 80; i++) {
		int b = rand() % 256;
		int g = rand() % 256;
		int r = rand() % 256;
		color.push_back(Scalar(b, g, r));
	}
	vector<OutputSeg> result;


	if (cls.Detect(img, net, result)) {
		DrawPred(img, result, cls._className, color);
	}
	else {
		cout << "Detect Failed!" << endl;
	}
	system("pause");
	return 0;
}



int main() {

	string img_path = "E:\\person.jpg";
	string detect_model_path = "C:\\Users\\Administrator\\Desktop\\yolov9-opencv-det-cplus\\models\\yolov9-c.onnx";
	Mat img = imread(img_path);
	Yolov9 task_detect;
	yolov9(task_detect,img,detect_model_path);    //Opencv detect


	return 0;
}

【测试环境】

vs2019

opencv==4.9.0

cmake==3.24.3

【源码下载】

https://download.csdn.net/download/FL1623863129/88903814

相关推荐
记录成长java37 分钟前
ServletContext,Cookie,HttpSession的使用
java·开发语言·servlet
前端青山37 分钟前
Node.js-增强 API 安全性和性能优化
开发语言·前端·javascript·性能优化·前端框架·node.js
青花瓷40 分钟前
C++__XCode工程中Debug版本库向Release版本库的切换
c++·xcode
睡觉谁叫~~~40 分钟前
一文解秘Rust如何与Java互操作
java·开发语言·后端·rust
音徽编程41 分钟前
Rust异步运行时框架tokio保姆级教程
开发语言·网络·rust
观音山保我别报错42 分钟前
C语言扫雷小游戏
c语言·开发语言·算法
小屁孩大帅-杨一凡2 小时前
java后端请求想接收多个对象入参的数据
java·开发语言
m0_656974742 小时前
C#中的集合类及其使用
开发语言·c#
java1234_小锋2 小时前
使用 RabbitMQ 有什么好处?
java·开发语言
wjs20242 小时前
R 数据框
开发语言