每天一个数据分析题(一百八十六)

现有名为df的数据框,若想要将其中列名为A和B的列删除,则下列方法可行的是()

A. df.drop(['A', 'B'])

B. df.drop(columns = ['A', 'B'])

C. df.drop(['A', 'B'], axis=0)

D. df.drop(['A', 'B'], axis=1)

题目来源于CDA模拟题库

点击此处获取答案

相关推荐
海绵宝宝汉堡包11 分钟前
数据分析专栏记录之 -基础数学与统计知识 2 概率论基础与python
python·数据分析·概率论
没有梦想的咸鱼185-1037-16632 小时前
AI大模型支持下的:CMIP6数据分析与可视化、降尺度技术与气候变化的区域影响、极端气候分析
人工智能·python·深度学习·机器学习·chatgpt·数据挖掘·数据分析
WSSWWWSSW3 小时前
Seaborn数据可视化实战:Seaborn多变量图表绘制高级教程
python·信息可视化·数据分析·matplotlib·seaborn
码界筑梦坊5 小时前
173-基于Flask的微博舆情数据分析系统
后端·python·数据分析·flask·毕业设计
人大博士的交易之路7 小时前
龙虎榜——20250822
大数据·数据挖掘·数据分析·缠中说禅·龙虎榜·道琼斯结构
WSSWWWSSW18 小时前
Seaborn数据可视化实战:Seaborn时间序列可视化入门
python·信息可视化·数据分析·matplotlib·seaborn
110546540119 小时前
37、需求预测与库存优化 (快消品) - /供应链管理组件/fmcg-inventory-optimization
前端·信息可视化·数据分析·js
云天徽上19 小时前
【数据可视化-96】使用 Pyecharts 绘制主题河流图(ThemeRiver):步骤与数据组织形式
开发语言·python·信息可视化·数据分析·pyecharts
没有梦想的咸鱼185-1037-166319 小时前
SWMM排水管网水力、水质建模及在海绵与水环境中的应用
数据仓库·人工智能·数据挖掘·数据分析
一个专注api接口开发的小白21 小时前
手把手教程:使用 Postman 测试与调试淘宝商品详情 API
前端·数据挖掘·api