全量知识系统问题及SmartChat给出的答复 之6 三套工具之1

Q15. 提出想法和问题

前面说过,DDD在我要设计的全量知识系统中位于中间层,是专门用来解决"知识汤"问题的。

解决的思路就是以将为在特定领域中的公司经营提供一个责任-权限平面为目的,帮助他们调整商业模式以及组建恰当的组织, 完成组织结构的重组。

在这一层需要提供的技术方法主要包括模糊性、概率、缺省、修改和相关性,使用这些技术来衡量、评估或适应 抽象理论难以与现实世界相匹配的结果。提供的每一种技术都是一种元层次的方法,用于寻找或构建一种理论,并确定其与现实的接近程度。 这些元层次的技术,可以称为"元技术推理"。

解读上面的内容,将其设计为一个推理系统的++生成工具++ 。(对应的,知识全量系统的前端"知识表征"和后端"知识获取和共享" 分别是 句子系统和证明系统的生成工具,它们分别叫做"元语言注释"和"元数据仓库"。前者是我们认识自然的认知地图的基础-归纳总结,后者是我们逻辑判断的数据基础-分析判断。而元技术推理则是 两者共同的起点 -组织推理,要求具有并发处理和并行控制的能力 )。

按照这个想法,整个知识系统对外部来说, 需要暴露三个独立的系统:句子系统,证明系统以及推理系统(自动化或规则化的 应用评测工具-"MOCK" )。 在中间的则分别是这三个系统的三套生成工具(形式化或规格化的应用开发工具,"CODE"),而后端必然需要提供这三个系统的运行时环境(范式化或标准化的应用部署工具 -"DOCK")。

请仔细阅读和了解上面的文字 。下面开始写程序。请先用程序简单给出这三套工具,及其三套工具之间的关系。

回答:

首先,定义三套工具的类:

python 复制代码
```python
class SentenceSystemGenerator:
    def generate_sentence_system(self):
        print("Generating sentence system...")

class ProofSystemGenerator:
    def generate_proof_system(self):
        print("Generating proof system...")

class ReasoningSystemGenerator:
    def generate_reasoning_system(self):
        print("Generating reasoning system...")

```

然后,定义中间层的生成工具类,将句子系统、证明系统和推理系统整合起来:

python 复制代码
```python
class MiddleLayerGenerator:
    def __init__(self):
        self.sentence_system_generator = SentenceSystemGenerator()
        self.proof_system_generator = ProofSystemGenerator()
        self.reasoning_system_generator = ReasoningSystemGenerator()

    def generate_middle_layer(self):
        self.sentence_system_generator.generate_sentence_system()
        self.proof_system_generator.generate_proof_system()
        self.reasoning_system_generator.generate_reasoning_system()
        print("Middle layer generated.")

```

最后,定义后端运行时环境的生成工具类:

python 复制代码
``python
class BackendRuntimeEnvironmentGenerator:
    def generate_backend_runtime_environment(self):
        print("Generating backend runtime environment...")

```

接下来,我们可以实例化这些类并调用它们来生成相应的工具和环境:

python 复制代码
```python
if __name__ == "__main__":
    middle_layer_generator = MiddleLayerGenerator()
    middle_layer_generator.generate_middle_layer()

    backend_runtime_environment_generator = BackendRuntimeEnvironmentGenerator()
    backend_runtime_environment_generator.generate_backend_runtime_environment()
```

这段代码将输出以下内容:

python 复制代码
```
Generating sentence system...
Generating proof system...
Generating reasoning system...
Middle layer generated.
Generating backend runtime environment...
```

这样我们就实现了三套工具及其之间关系的简单程序。

相关推荐
xinxiyinhe11 分钟前
如何设置Cursor中.cursorrules文件
人工智能·python
AI服务老曹16 分钟前
运用先进的智能算法和优化模型,进行科学合理调度的智慧园区开源了
运维·人工智能·安全·开源·音视频
alphaAIstack26 分钟前
大语言模型推理能力从何而来?
人工智能·语言模型·自然语言处理
zenRRan1 小时前
Qwen2.5-VL Technical Report!!! 操作手机电脑、解析化学公式和乐谱、剪辑电影等,妥妥六边形战士 !...
人工智能
冒泡的肥皂1 小时前
DeepSeek+Dify打造数据库查询专家
人工智能
让我安静会1 小时前
Obsidian·Copilot 插件配置(让AI根据Obsidian笔记内容进行对话)
人工智能·笔记·copilot
Allen_LVyingbo1 小时前
Scrum方法论指导下的Deepseek R1医疗AI部署开发
人工智能·健康医疗·scrum
Watermelo6171 小时前
从DeepSeek大爆发看AI革命困局:大模型如何突破算力囚笼与信任危机?
人工智能·深度学习·神经网络·机器学习·ai·语言模型·自然语言处理
Donvink1 小时前
【DeepSeek-R1背后的技术】系列九:MLA(Multi-Head Latent Attention,多头潜在注意力)
人工智能·深度学习·语言模型·transformer
计算机软件程序设计1 小时前
深度学习在图像识别中的应用-以花卉分类系统为例
人工智能·深度学习·分类