总结归纳Kubernetes | 一站式速查知识,助您轻松驾驭容器编排技术(水平扩展控制)

前提介绍

Kubernetes,亦被称为K8s,是业界公认的容器编排巨擘,以其卓越的能力简化了容器化应用的部署、扩展和管理流程。通过其强大的功能,Kubernetes不仅提升了应用的可靠性和可伸缩性,还优化了资源利用率,为开发者和运维人员提供了更加高效、灵活的容器运行环境。

在传统的应用部署模式中,不同环境间的基础设施与配置差异构成了巨大的挑战,使得跨环境部署变得困难重重。然而,Kubernetes的出现彻底改变了这一局面。它通过构建一个统一的容器编排平台,巧妙地将底层基础设施的复杂性进行了抽象,让开发人员能够摆脱繁琐的环境配置问题。在Kubernetes的助力下,应用程序可以在不同环境中实现一致且高效的部署与管理,这不仅极大地提升了应用的可移植性,更为未来的扩展性奠定了坚实的基础。

文章主旨

本篇文章是学习开发使用k8s的必备工具,提供了对无缝部署管理所需的基本命令的快速访问。让我们将其视为快节奏Kubernetes环境中的必备指南,以提高生产力,减少错误,并确保在复杂任务中的高效导航。不仅包含了Kubernetes中最常用的命令,还提供了针对特定任务的实用提示和最佳实践。无论您是经验丰富的Kubernetes管理员还是初学者,这份速查表都将成为您日常工作中的宝贵资源。

通过本系列文章,您可以快速了解如何创建和管理部署(Deployments)、服务(Services)、持久存储(Persistent Storage)以及其他Kubernetes资源。


基础认识

下面是关于Kubernetes所需的关键组件的介绍:

Kubernetes 概念 描述
Pod Kubernetes 中的最小可部署单元,它是运行容器的资源对象。
Node 集群中的物理或虚拟机,用于运行 Pod。
Deployment 描述一组 Pod 的期望状态,用于管理 Pod 的创建、更新和删除。
Service 定义一组 Pod 和访问它们的策略,用于实现服务的发现和负载均衡。
Labels 附加到对象上的键值对,用于灵活分类和选择资源。用于标识和分组相关资源。
Master Kubernetes 的控制平面,管理集群的整体状态。包括 API 服务器、etcd、控制器管理器和调度器等组件。

基础架构

Kubernetes 采用高效的客户端-服务器架构,其核心由控制平面(Control Plane)和一组专门用于运行容器的节点(Nodes)构成。这种架构确保了系统的可扩展性、灵活性和可靠性,使得 Kubernetes 成为容器编排领域的佼佼者。

Kubernetes 客户端-服务器架构

Kubernetes 采用客户端-服务器架构,由控制平面(Control Plane)和一组运行容器的节点(Nodes)组成。

控制平面(Control Plane)

控制平面是 Kubernetes 集群的大脑,负责做出全局决策,如调度工作负载、维护集群的状态等。控制平面主要由以下几个组件组成:

  1. API 服务器(API Server)

    • 提供 RESTful API,供用户和其他组件与 Kubernetes 集群交互。
    • 负责认证、授权和 API 访问控制。
  2. etcd

    • 一个高度可用的键值存储系统,用于持久保存集群的状态。
    • 控制平面组件使用 etcd 存储集群数据,如 Pod、Service、Deployment 等的配置和状态信息。
  3. 控制器管理器(Controller Manager)

    • 负责运行各种控制器,这些控制器是后台进程,用于处理集群中资源对象(如 Pods、ReplicationControllers、Services 等)的创建、更新、删除和复制等操作。
    • 例如,复制控制器(ReplicationController)确保指定数量的 Pod 副本始终在运行。
  4. 调度器(Scheduler)

    • 负责决定新 Pod 应该被调度到哪个 Node 上运行。
    • 考虑各种因素,如资源可用性、硬件限制、Pod 的约束和亲和性等。

节点(Nodes)

节点是 Kubernetes 集群的工作负载运行场所,每个节点都运行着以下组件:

  1. Kubelet

    • 负责管理 Pod 和容器,确保容器按照期望的状态运行。
    • 与 Master 节点上的 API 服务器通信,接收并执行指令。
  2. Kube-proxy

    • 负责实现 Kubernetes Service 的网络代理功能。
    • 它能够处理网络流量,实现 Service 的负载均衡和网络访问。
  3. 容器运行时(Container Runtime)

    • 如 Docker、containerd 或 CRI-O 等。
    • 负责运行和管理容器。

客户端工具

此外,Kubernetes 还提供了一系列客户端工具,如 kubectl,它是 Kubernetes 的命令行界面(CLI),用于与集群进行交互,执行如部署应用、管理资源等操作。

通过这种架构,Kubernetes 能够在控制平面和节点之间实现高效的协调,为用户提供易于使用和灵活强大的容器编排功能。

基础命令

在掌握了Kubernetes的基本术语和架构之后,接下来我们需要熟悉一些关键的基础命令,以便更好地管理Kubernetes集群。这些命令不仅能够帮助我们深入了解集群的状态和配置,还能快速概览可用资源及其版本。通过运用这些命令,我们能够更加高效地管理Kubernetes集群,确保系统的稳定运行和资源的合理利用。

Command Description
kubectl cluster-info 显示集群中主节点和服务的端点信息。
kubectl version 显示客户端和服务器上运行的Kubernetes版本。
kubectl config view 获取集群的配置信息。
kubectl api-resources 列出所有可用的API资源。
kubectl api-versions 列出所有可用的API版本。
kubectl get all --all-namespaces 列出所有命名空间中的所有资源。

具体来说,这些命令提供了集群的整体信息,包括版本、配置、API资源等关键要素。通过执行这些命令,我们可以快速了解集群的当前状态,以及哪些资源是可用的。这对于日常维护和故障排除非常有帮助,能够让我们及时发现问题并采取相应的措施。


Pod和容器

Pod是Kubernetes中最小的可部署单元,代表着集群中运行进程的单一实例,作为基本的构建模块,Pod可以容纳一个或多个容器,这些容器共享相同的网络命名空间,从而允许它们通过localhost进行无缝通信。

容器是一种轻量级、独立且可执行的软件包,它封装了运行软件所需的所有依赖,包括代码、运行时环境、库和系统工具。通过容器,应用程序能够获得一个稳定且隔离的运行环境,确保其在不同场景下都能保持一致的表现。

创建、管理 pod 和排除故障的常用命令

Command Description
kubectl apply -f <pod_configuration> 使用YAML文件中指定的配置来创建或更新Pod。
kubectl get pods 列出默认命名空间中的所有Pod。
kubectl get pods --all-namespaces 列出所有命名空间中的所有Pod。
kubectl describe pod <pod_name> 显示特定Pod的详细信息。
kubectl logs <pod_name> 查看特定Pod的日志。
kubectl exec -it <pod_name> -- /bin/bash 在正在运行的容器中打开一个交互式shell。
kubectl delete pod <pod_name> 删除特定的Pod。
kubectl port-forward <pod_name> <local_port>:<pod_port> 将Pod的端口转发到本地机器。

Pod和容器的设计分析

在 Kubernetes 环境中,高效的容器化策略对于应用程序的顺畅部署和管理至关重要。以下是优化容器化应用程序的几个核心设计:

  • 遵循单一职责原则,确保每个容器都具备明确且特定的功能。这种模块化设计不仅简化了维护流程,还增强了应用程序的稳健性。
  • 尽可能减小容器镜像的大小,通过去除不必要的层级和依赖关系来实现。较小的镜像能够加快部署速度,同时减少资源消耗,从而提升整体性能。
  • 利用环境变量来配置应用程序,以提高其灵活性和可调整性。这种方法允许在不修改容器镜像的情况下轻松调整设置,从而适应不同的环境和需求。
  • 在应用程序中实施健康检查机制,使 Kubernetes 能够准确评估其健康状态。这有助于实现自动修复和确保可靠的应用程序性能,减少潜在的运行时问题。
  • 为容器设置合理的 CPU 和内存等资源限制,以防止资源过度消耗。通过限制容器的资源使用,可以确保公平的资源分配,避免个别行为异常的容器对整个集群产生不良影响。

Pod指令大全快速查找

创建pod容器的Yaml格式

在 Kubernetes 中,采用多容器 Pod 的策略可以显著增强同一 Pod 内部各容器间的协作与资源共享能力。以下是几种不同的多容器模式的代码示例,以展示其实际应用。 介绍之前,先给大家总结一个Pod的结构的yaml基础结构图

yaml 复制代码
  apiVersion:API版本,指定了Pod的配置所遵循的Kubernetes API版本
  kind:资源类型,指定为"Pod"
  metadata:元数据,包含了关于Pod的信息
    - name:Pod的名称
    - labels:标签,用于标识和选择Pod
  spec:规格,定义了Pod的规格和配置
    - containers:容器列表,包含了Pod中的一个或多个容器
      - name:容器名称
      - image:容器所使用的镜像
      - ports:容器的端口配置
        - containerPort:容器内部的端口号
        - protocol:协议类型(如TCP、UDP)
    - volumes:卷列表,用于挂载到Pod中的容器中
      - name:卷名称
      - emptyDir:空目录,用于将容器的临时数据存储在内存中

这是一个基本的Kubernetes(k8s)Pod的基本结构,你可以根据自己的需要进一步添加和修改配置。

Sidecar容器模式

Sidecar 容器模式是一种创新的容器编排策略,它允许在主应用程序容器的旁边部署一个或多个辅助容器,用以增强或扩展主容器的功能。

yaml 复制代码
apiVersion: v1  
kind: Pod  
metadata:  
  name: sidercar-pod  
spec:  
  containers:  
  - name: main-server  
    image: main-server:1.0
    ports:
      - containerPort: 8081    
  - name: sidecar-collector  
    image: sidecar-collector:1.0
    ports:
      - containerPort: 8082        

这种模式的独特之处在于其能够无缝集成日志收集、监控等额外功能,使应用程序的运行更加高效和可靠。通过 Sidecar 容器,开发人员能够更灵活地管理和维护应用程序,提升整个系统的可扩展性和可维护性。

Adapter容器模式

Adapter 容器模式是一种强大的策略,它专门设计用来在应用程序与特定的后端服务或资源(例如数据库)之间建立适配层。这种模式的目的是将后端通信的复杂性封装在 Adapter 容器中,从而保持主应用程序容器的清晰和简洁。通过 Adapter 容器,开发人员能够将应用程序与后端服务的解耦,提高代码的模块化和可维护性,同时确保应用程序的稳定运行和可扩展性。

yaml 复制代码
apiVersion: v1  
kind: Pod  
metadata:  
  name: adapter-pod  
spec:  
  containers:  
  - name: main-server  
    image: main-server:1.0
    ports:
      - containerPort: 8081        
  - name: pgdata-adapter  
    image: pgdata:1.0  
    ports:
      - containerPort: 8082        

适配器容器在数据流向主应用程序之前,会对其进行必要的转换或调整,以确保数据的兼容性和有效性。这一过程旨在消除不同系统间的差异,提供一个统一、无缝的集成点,使应用程序能够无缝地利用后端资源,实现更顺畅、高效的数据流通。

Ambassador容器模式

在这种架构中,Ambassador 容器扮演着至关重要的中介角色,它代表主应用程序处理所有通信和网络相关任务,确保数据的安全、高效和准确传输。

yaml 复制代码
apiVersion: v1  
kind: Pod  
metadata:  
  name: Ambassador-pod  
spec:  
  containers:  
  - name: main-server  
    image: main-server:1.0
    ports:
      - containerPort: 8081        
  - name: Ambassador-adapter  
    image: Ambassador:1.0  
    ports:
      - containerPort: 8082        

Ambassador 容器模式类似于Adapter,但更侧重于提供与外部世界(如 API 网关)的通信。使用不同类型的容器,以实现更灵活和强大的应用程序部署和管理。通过结合这些模式,您可以根据应用程序的需求和架构来定制和优化 Pod 的设计。

最后还有一种init模式,配置方式类似,在这里我就不一一列举了,Init 容器在应用程序容器启动之前运行,常用于执行一些前置条件,如配置环境、下载依赖或等待外部资源就绪。有兴趣的小伙伴,可以好好研究一下。

Deployments和ReplicaSets

Deployments与ReplicaSets在Kubernetes 集群中扮演着至关重要的角色,共同管理应用程序的部署、扩展和更新生命周期,部署和副本集共同协作,为 Kubernetes 集群中的应用程序提供了强大而灵活的管理和扩展能力,确保了应用程序的高可用性和稳定性。

  • 部署(Deployment)是 Kubernetes 中的一个核心概念,它提供了一种声明式的方式来定义、更新和管理应用程序的生命周期。通过部署,开发人员可以轻松地指定他们希望运行的应用程序版本和配置,而 Kubernetes 则会负责实际的部署和更新过程。

  • 副本集(ReplicaSet)与部署紧密关联,它充当了一个控制器的角色,确保指定数量的相同 Pod 副本始终在运行状态。这意味着,无论发生何种故障或变化,副本集都会确保有足够的 Pod 副本可用,以满足应用程序的需求和性能要求。

生命周期

Kubernetes 中的部署管理 pod 的部署和扩展,提供了一种声明式方法来定义所需的状态。生命周期包括几个关键阶段:

  • 部署创建:首先,您需要创建一个部署,其中明确指定所需的副本数量以及 pod 的模板规格。这是部署过程的基础。

  • 副本集生成:一旦部署被创建,Kubernetes 将自动生成一个与之关联的 ReplicaSet。这个 ReplicaSet 的职责是确保始终有指定数量的 pod 副本正在运行。

  • Pod 创建与扩展:根据在部署中定义的模板,ReplicaSet 会负责创建单个 pod。当您需要扩展应用程序时,只需调整所需的副本数量即可。部署会实时监控并确保始终维持正确的 pod 数量。

  • 滚动更新机制:当您需要更新应用程序时,部署系统将采用一种称为滚动更新的策略。这意味着,它会使用更新后的配置来创建新的 ReplicaSet,同时逐步缩减旧的 ReplicaSet。这一过程确保了更新过程中的平滑过渡,避免了服务中断。

  • 终止与完成:最终,旧的 ReplicaSet 会被完全缩减至零,标志着更新过程的结束。此时,整个系统已完全过渡到使用更新后的配置和 pod。

Deployments指令大全快速查找

部署和管理滚动更新扩展应用程序的方案

扩展部署

  • 扩展至指定数量的副本: kubectl scale deployment <deployment_name> --replicas=<num>
  • 根据CPU使用率自动扩展: kubectl autoscale deployment <deployment_name> --cpu-percent=<percentage> --min=<min_replicas> --max=<max_replicas

管理滚动更新

  • 使用新镜像更新部署: kubectl set image deployment/<deployment_name> <container_name>=<new_image>
  • 监控滚动更新进度: kubectl rollout status deployment/<deployment_name>
  • 回滚到先前版本:kubectl rollout undo deployment/<deployment_name>
  • 暂停和恢复滚动更新:kubectl rollout pause deployment/<deployment_name>kubectl rollout resume deployment/<deployment_name>
  • 自定义更新策略:kubectl apply -f customer-deployment-strategy.yaml

这些命令为快速扩展部署、满足需求以及有效管理滚动更新提供了便捷的参考。无论您需要调整副本数量,还是希望运用不同的策略来协调更新,这份详尽的指南都将助您一臂之力,极大地简化 Kubernetes环境中的部署流程。

创建和更新ReplicaSet的案例

创建ReplicaSet

配置文件定义了一个名为 demo-replicaset 的 ReplicaSet,其主要职责是确保运行三个 pod 副本。每个 pod 都基于一个模板创建,该模板包含了一个名为 demo-container 的容器,该容器使用 demo-image:latest 镜像。

yaml 复制代码
apiVersion: apps/v1
kind: ReplicaSet
metadata:
  name: demo-replicaset
spec:
  replicas: 3
  selector:
    matchLabels:
      app: demo
  template:
    metadata:
      labels:
        app: demo
    spec:
      containers:
      - name: demo-container
        image: demo-image:latest

这样的配置有助于确保应用程序的高可用性和可扩展性,当某个pod出现故障或被删除时,ReplicaSet会自动启动新的 pod 以替代它。

更新ReplicaSet

yaml 复制代码
apiVersion: apps/v1
kind: ReplicaSet
metadata:
  name: demo-replicaset
spec:
  replicas: 5  # Update the number of replicas
  selector:
    matchLabels:
      app: demo
  template:
    metadata:
      labels:
        app: demo
    spec:
      containers:
      - name: demo-container
        image: updated-demo-image:latest  # Update the container image

YAML 配置现在针对名为 'demo-replicaset' 的现有 ReplicaSet 进行了更新。新的配置将所需的副本数量调整至 5 个,同时,Pod 模板也经过了更新,现在使用 'updated-demo-image:latest' 作为容器镜像。这些更改将确保 ReplicaSet 能够以更高的可用性和灵活性运行,以满足不断变化的业务需求。"

下篇预告

在即将发表的文章中,我们将进一步聚焦于服务与网络(Services and Networking)相关的核心组件,进行深入的介绍、分析和阐释。通过这篇文章,读者将能够更全面地了解这些组件的功能、特点以及它们在整体架构中的重要性。我们期待通过分享专业知识和经验,为读者提供更深入、更全面的了解和掌握这些关键组件的机会。

相关推荐
向前看-2 小时前
验证码机制
前端·后端
超爱吃士力架4 小时前
邀请逻辑
java·linux·后端
AskHarries5 小时前
Spring Cloud OpenFeign快速入门demo
spring boot·后端
魏 无羡6 小时前
linux CentOS系统上卸载docker
linux·kubernetes·centos
isolusion6 小时前
Springboot的创建方式
java·spring boot·后端
Karoku0667 小时前
【k8s集群应用】kubeadm1.20高可用部署(3master)
运维·docker·云原生·容器·kubernetes
zjw_rp7 小时前
Spring-AOP
java·后端·spring·spring-aop
TodoCoder7 小时前
【编程思想】CopyOnWrite是如何解决高并发场景中的读写瓶颈?
java·后端·面试
凌虚8 小时前
Kubernetes APF(API 优先级和公平调度)简介
后端·程序员·kubernetes
机器之心9 小时前
图学习新突破:一个统一框架连接空域和频域
人工智能·后端