[超分辨率重建]ESRGAN算法训练自己的数据集过程

一、下载数据集及项目包

1. 数据集

1.1 文件夹框架的介绍,如下图所示:主要有train和val,分别有高清(HR)和低清(LR)的图像。
1.2 原图先通过分割尺寸的脚本先将数据集图片处理成两个相同的图像组(HR和LR)。

如训练x4的ESRGAN模型,那么我们需要将HR的图像尺寸与LR的图像尺寸比例是4:1。在我的训练中,我将HR的图像尺寸分割成了480x480,LR的图像分割成了120x120。如下图所示。

随后将分割好的图像按照train和val的分类,分成如1.1图中的文件结构。

2. 项目包

在我的下载资源中有SR项目包的下载,后续上链接。也可以在我上传的资源中下载。

二、训练ESRGAN

ESRGAN模型包括生成模型的训练和判别模型的训练。

2.1 配置RRDBNet_train.py(生成模型)的参数及训练

2.1.1 训练的图像路径设置:dataroot_gt为HR图像的路径、dataroot_lq为LR图像的路径。
2.1.2 batch_size_per_gpu为batchsize的设置,根据显存大小相应设置,显存越大可以设置的值越大,但是训练时间也会增大。
2.1.3 val的数据集路径设置,dataroot_gt为HR的图像路径、dataroot_lq为LR图像的路径。
2.1.4 训练迭代次数的设置,可以设置到10万或者更大
2.1.5 训练结果指标的计算psnr和ssim。val_freq参数为保存结果的频率。下图中我的设置为1e3即1000轮保存一次。
2.1.6 保存训练权重的频率设置。下图中我的设置为1e3,即为1000次保存一次训练权重。
2.1.7 RRDBNet_train.py的训练
python 复制代码
python basicsr/train.py -opt options\train\ESRGAN\train_RRDBNet_PSNR_x4.yml

2.2 配置ESRGAN_train.py(判别模型)的参数及训练

2.2.1 ESRGAN_train.py的参数设置

ESRGAN_train.py的参数设置与RRDBNet_train.py相同,但是多了一个pretrain_network_g参数的设置,即填RRDBNet_train.py训练完以后最好的那次权重路径。

2.2.2 ESRGAN_train.py的训练
python 复制代码
python basicsr/train.py -opt options\train\ESRGAN\train_RRDBNet_PSNR_x4.yml

三、测试

3.1 测试图片路径的设置

包括HR和LR的路径,分别为dataroot_gt和dataroot_lq。

3.2 ESRGAN模型权重的路径导入

在pretrain_network_g参数中导入ESRGAN模型训练完后生成的权重路径。

四、训练中断后,继续训练

只需要在训练代码后加上--auto_resume

python 复制代码
python basicsr/train.py -opt options\train\ESRGAN\train_RRDBNet_PSNR_x4.yml --auto_resume

------------------ 今天不学习,明天变垃圾。 ---------------------

相关推荐
人工智能训练6 小时前
【极速部署】Ubuntu24.04+CUDA13.0 玩转 VLLM 0.15.0:预编译 Wheel 包 GPU 版安装全攻略
运维·前端·人工智能·python·ai编程·cuda·vllm
源于花海6 小时前
迁移学习相关的期刊和会议
人工智能·机器学习·迁移学习·期刊会议
DisonTangor8 小时前
DeepSeek-OCR 2: 视觉因果流
人工智能·开源·aigc·ocr·deepseek
薛定谔的猫19828 小时前
二十一、基于 Hugging Face Transformers 实现中文情感分析情感分析
人工智能·自然语言处理·大模型 训练 调优
发哥来了8 小时前
《AI视频生成技术原理剖析及金管道·图生视频的应用实践》
人工智能
数智联AI团队8 小时前
AI搜索引领开源大模型新浪潮,技术创新重塑信息检索未来格局
人工智能·开源
不懒不懒8 小时前
【线性 VS 逻辑回归:一篇讲透两种核心回归模型】
人工智能·机器学习
冰西瓜6009 小时前
从项目入手机器学习——(四)特征工程(简单特征探索)
人工智能·机器学习
Ryan老房9 小时前
未来已来-AI标注工具的下一个10年
人工智能·yolo·目标检测·ai
丝斯20119 小时前
AI学习笔记整理(66)——多模态大模型MOE-LLAVA
人工智能·笔记·学习