[超分辨率重建]ESRGAN算法训练自己的数据集过程

一、下载数据集及项目包

1. 数据集

1.1 文件夹框架的介绍,如下图所示:主要有train和val,分别有高清(HR)和低清(LR)的图像。
1.2 原图先通过分割尺寸的脚本先将数据集图片处理成两个相同的图像组(HR和LR)。

如训练x4的ESRGAN模型,那么我们需要将HR的图像尺寸与LR的图像尺寸比例是4:1。在我的训练中,我将HR的图像尺寸分割成了480x480,LR的图像分割成了120x120。如下图所示。

随后将分割好的图像按照train和val的分类,分成如1.1图中的文件结构。

2. 项目包

在我的下载资源中有SR项目包的下载,后续上链接。也可以在我上传的资源中下载。

二、训练ESRGAN

ESRGAN模型包括生成模型的训练和判别模型的训练。

2.1 配置RRDBNet_train.py(生成模型)的参数及训练

2.1.1 训练的图像路径设置:dataroot_gt为HR图像的路径、dataroot_lq为LR图像的路径。
2.1.2 batch_size_per_gpu为batchsize的设置,根据显存大小相应设置,显存越大可以设置的值越大,但是训练时间也会增大。
2.1.3 val的数据集路径设置,dataroot_gt为HR的图像路径、dataroot_lq为LR图像的路径。
2.1.4 训练迭代次数的设置,可以设置到10万或者更大
2.1.5 训练结果指标的计算psnr和ssim。val_freq参数为保存结果的频率。下图中我的设置为1e3即1000轮保存一次。
2.1.6 保存训练权重的频率设置。下图中我的设置为1e3,即为1000次保存一次训练权重。
2.1.7 RRDBNet_train.py的训练
python 复制代码
python basicsr/train.py -opt options\train\ESRGAN\train_RRDBNet_PSNR_x4.yml

2.2 配置ESRGAN_train.py(判别模型)的参数及训练

2.2.1 ESRGAN_train.py的参数设置

ESRGAN_train.py的参数设置与RRDBNet_train.py相同,但是多了一个pretrain_network_g参数的设置,即填RRDBNet_train.py训练完以后最好的那次权重路径。

2.2.2 ESRGAN_train.py的训练
python 复制代码
python basicsr/train.py -opt options\train\ESRGAN\train_RRDBNet_PSNR_x4.yml

三、测试

3.1 测试图片路径的设置

包括HR和LR的路径,分别为dataroot_gt和dataroot_lq。

3.2 ESRGAN模型权重的路径导入

在pretrain_network_g参数中导入ESRGAN模型训练完后生成的权重路径。

四、训练中断后,继续训练

只需要在训练代码后加上--auto_resume

python 复制代码
python basicsr/train.py -opt options\train\ESRGAN\train_RRDBNet_PSNR_x4.yml --auto_resume

------------------ 今天不学习,明天变垃圾。 ---------------------

相关推荐
那个村的李富贵12 小时前
光影魔术师:CANN加速实时图像风格迁移,让每张照片秒变大师画作
人工智能·aigc·cann
腾讯云开发者13 小时前
“痛点”到“通点”!一份让 AI 真正落地产生真金白银的实战指南
人工智能
CareyWYR13 小时前
每周AI论文速递(260202-260206)
人工智能
hopsky14 小时前
大模型生成PPT的技术原理
人工智能
禁默15 小时前
打通 AI 与信号处理的“任督二脉”:Ascend SIP Boost 加速库深度实战
人工智能·信号处理·cann
心疼你的一切15 小时前
昇腾CANN实战落地:从智慧城市到AIGC,解锁五大行业AI应用的算力密码
数据仓库·人工智能·深度学习·aigc·智慧城市·cann
AI绘画哇哒哒15 小时前
【干货收藏】深度解析AI Agent框架:设计原理+主流选型+项目实操,一站式学习指南
人工智能·学习·ai·程序员·大模型·产品经理·转行
数据分析能量站15 小时前
Clawdbot(现名Moltbot)-现状分析
人工智能
那个村的李富贵15 小时前
CANN加速下的AIGC“即时翻译”:AI语音克隆与实时变声实战
人工智能·算法·aigc·cann
二十雨辰15 小时前
[python]-AI大模型
开发语言·人工智能·python