【MapReduce】02.Hadoop序列化

实现bean对象序列化步骤

自定义bean对象实现序列化接口。

1)必须实现Writable接口

2)反序列化时,需要反射调用空参构造函数,所以必须有空参构造

java 复制代码
public FlowBean(){
    super();
}

3)重写序列化方法

java 复制代码
@Override
public void write(DataOutput out) throws IOException{
    out.writeLong(upFlow);
    out.writeLong(downFlow);
    out.wirteLong(sumFlow);
}

4)重写反序列化方法

java 复制代码
@override
public void readFields(DataInput in) throws IOException{
    upFlow = in.readLong();
    downFlow = in.readLong();
    sumFlow = in.readLong();
}

5)注意反序列化顺序和序列化顺序要完全一致

6)要想把结果显示在文件中,需要重写toString()方法,可用\t分开,方便后续使用

7)如果需要将自定义的bean放在key中传输,则还需要实现Comparable接口,因为MapReduce框中的shuffle过程要求对key必须能排序

java 复制代码
@Override
public int compareTo(FlowBean o){
    return this.sumFlow > o.getSumFlow() ? -1 : 1;
}

代码案例(统计流量)

FlowBean
java 复制代码
public class FlowBean implements Writable {

    private long upFlow;
    private long downFlow;
    private long sumFlow;
    public FlowBean() {
    }

    public long getUpFlow() {
        return upFlow;
    }

    public void setUpFlow(long upFlow) {
        this.upFlow = upFlow;
    }

    public long getDownFlow() {
        return downFlow;
    }

    public void setDownFlow(long downFlow) {
        this.downFlow = downFlow;
    }

    public long getSumFlow() {
        return sumFlow;
    }

    public void setSumFlow(long sumFlow) {
        this.sumFlow = sumFlow;
    }
    public void setSumFlow() {
        this.sumFlow = this.upFlow + this.downFlow;
    }

    @Override
    public void write(DataOutput dataOutput) throws IOException {
        dataOutput.writeLong(upFlow);
        dataOutput.writeLong(downFlow);
        dataOutput.writeLong(sumFlow);
    }

    @Override
    public void readFields(DataInput dataInput) throws IOException {
        this.upFlow = dataInput.readLong();
        this.downFlow = dataInput.readLong();
        this.sumFlow = dataInput.readLong();
    }

    @Override
    public String toString() {
        return upFlow + "\t" + downFlow + "\t" + sumFlow ;
    }
}
FlowMapper
java 复制代码
public class FlowMapper extends Mapper<LongWritable, Text,Text,FlowBean> {
    private Text outK = new Text();
    private FlowBean outV = new FlowBean();
    @Override
    protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, FlowBean>.Context context) throws IOException, InterruptedException {
        String line = value.toString();
        String[] split = line.split(" ");
        String phone = split[1];
        String upFlow = split[2];
        String downFlow = split[3];

        outK.set(phone);
        outV.setUpFlow(Long.parseLong(upFlow));
        outV.setDownFlow(Long.parseLong(downFlow));
        // outV.setSumFlow(Long.parseLong(upFlow) + Long.parseLong(downFlow));
        outV.setSumFlow();

        context.write(outK,outV);
    }
}
FlowReducer
java 复制代码
public class FlowReducer extends Reducer<Text,FlowBean,Text,FlowBean> {
    private FlowBean outV = new FlowBean();
    @Override
    protected void reduce(Text key, Iterable<FlowBean> values, Reducer<Text, FlowBean, Text, FlowBean>.Context context) throws IOException, InterruptedException {
        long totalUpFlow = 0;
        long totalDownFlow = 0;
        for (FlowBean value : values) {
            totalUpFlow += value.getUpFlow();
            totalDownFlow += value.getDownFlow();
        }
        outV.setUpFlow(totalUpFlow);
        outV.setDownFlow(totalDownFlow);
        outV.setSumFlow();

        context.write(key,outV);
    }
}
FlowDriver
java 复制代码
public class FlowDriver{
    public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf);
        job.setJarByClass(FlowDriver.class);
        job.setMapperClass(FlowMapper.class);
        job.setReducerClass(FlowReducer.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(FlowBean.class);
        FileInputFormat.setInputPaths(job,new Path("Data/input/TestFlowBean"));
        FileOutputFormat.setOutputPath(job,new Path("Data/output/TestFlow3"));

        Boolean result = job.waitForCompletion(true);
        System.exit(result ? 0:1);
    }
}
相关推荐
在努力的前端小白2 小时前
Spring Boot 敏感词过滤组件实现:基于DFA算法的高效敏感词检测与替换
java·数据库·spring boot·文本处理·敏感词过滤·dfa算法·组件开发
一叶飘零_sweeeet4 小时前
从繁琐到优雅:Java Lambda 表达式全解析与实战指南
java·lambda·java8
艾伦~耶格尔4 小时前
【集合框架LinkedList底层添加元素机制】
java·开发语言·学习·面试
一只叫煤球的猫5 小时前
🕰 一个案例带你彻底搞懂延迟双删
java·后端·面试
最初的↘那颗心5 小时前
Flink Stream API 源码走读 - print()
java·大数据·hadoop·flink·实时计算
JH30736 小时前
Maven的三种项目打包方式——pom,jar,war的区别
java·maven·jar
君不见,青丝成雪6 小时前
hadoop技术栈(九)Hbase替代方案
大数据·hadoop·hbase
晴天彩虹雨6 小时前
存算分离与云原生:数据平台的新基石
大数据·hadoop·云原生·spark
带刺的坐椅7 小时前
轻量级流程编排框架,Solon Flow v3.5.0 发布
java·solon·workflow·flow·solon-flow
David爱编程7 小时前
线程调度策略详解:时间片轮转 vs 优先级机制,面试常考!
java·后端