1、冒泡排序
最简单的一种排序算法。假设长度为n的数组arr,要按照从小到大排序。则冒泡排序的具体过程可以描述为:首先从数组的第一个元素开始到数组最后一个元素为止,对数组中相邻的两个元素进行比较,如果位于数组左端的元素大于数组右端的元素,则交换这两个元素在数组中的位置。这样操作后数组最右端的元素即为该数组中所有元素的最大值。接着对该数组除最右端的n-1个元素进行同样的操作,再接着对剩下的n-2个元素做同样的操作,直到整个数组有序排列。算法的时间复杂度为O(n^2)。
/* 冒泡排序 */
void BubbleSort(int arr[], int length)
{
for (int i = 0; i < length; i++)
{
for (int j = 0; j < length - i - 1; j++)
{
if (arr[j] > arr[j + 1])
{
int temp;
temp = arr[j + 1];
arr[j + 1] = arr[j];
arr[j] = temp;
}
}
}
}
2、选择排序
严蔚敏版《数据结构》中对选择排序的基本思想描述为:每一趟在n-i+1(i=1,2,...,n-1)个记录中选取关键字最小的记录作为有序序列中第i个记录。具体来说,假设长度为n的数组arr,要按照从小到大排序,那么先从n个数字中找到最小值min1,如果最小值min1的位置不在数组的最左端(也就是min1不等于arr[0]),则将最小值min1和arr[0]交换,接着在剩下的n-1个数字中找到最小值min2,如果最小值min2不等于arr[1],则交换这两个数字,依次类推,直到数组arr有序排列。算法的时间复杂度为O(n^2)。
/* 选择排序 */
void SelectionSort(int arr[], int length)
{
int index, temp;
for (int i = 0; i < length; i++)
{
index = i;
for (int j = i + 1; j < length; j++)
{
if (arr[j] < arr[index])
index = j;
}
if (index != i)
{
temp = arr[i];
arr[i] = arr[index];
arr[index] = temp;
}
}
}
3、快排
快速排序的基本思想是:通过一趟排序将待排记录分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,则可分别对这两部分记录继续进行排序,已达到整个序列有序。一趟快速排序的具体过程可描述为:从待排序列中任意选取一个记录(通常选取第一个记录)作为基准值,然后将记录中关键字比它小的记录都安置在它的位置之前,将记录中关键字比它大的记录都安置在它的位置之后。这样,以该基准值为分界线,将待排序列分成的两个子序列。
一趟快速排序的具体做法为:设置两个指针low和high分别指向待排序列的开始和结尾,记录下基准值baseval(待排序列的第一个记录),然后先从high所指的位置向前搜索直到找到一个小于baseval的记录并互相交换,接着从low所指向的位置向后搜索直到找到一个大于baseval的记录并互相交换,重复这两个步骤直到low=high为止。
// 快速排序
void QuickSort(int arr[], int start, int end)
{
if (start >= end)
return;
int i = start;
int j = end;
// 基准数
int baseval = arr[start];
while (i < j)
{
// 从右向左找比基准数小的数
while (i < j && arr[j] >= baseval)
{
j--;
}
if (i < j)
{
arr[i] = arr[j];
i++;
}
// 从左向右找比基准数大的数
while (i < j && arr[i] < baseval)
{
i++;
}
if (i < j)
{
arr[j] = arr[i];
j--;
}
}
// 把基准数放到i的位置
arr[i] = baseval;
// 递归
QuickSort(arr, start, i - 1);
QuickSort(arr, i + 1, end);
}
4、插入排序
插入排序的基本思想就是将无序序列插入到有序序列中。例如要将数组arr=[4,2,8,0,5,1]排序,可以将4看做是一个有序序列(图中用蓝色标出),将[2,8,0,5,1]看做一个无序序列。无序序列中2比4小,于是将2插入到4的左边,此时有序序列变成了[2,4],无序序列变成了[8,0,5,1]。无序序列中8比4大,于是将8插入到4的右边,有序序列变成了[2,4,8],无序序列变成了[0,5,1]。以此类推,最终数组按照从小到大排序。该算法的时间复杂度为O(n^2)。
// 插入排序
void InsertSort(int arr[], int length)
{
for (int i = 1; i < length; i++)
{
int j;
if (arr[i] < arr[i - 1])
{
int temp = arr[i];
for (j = i - 1; j >= 0 && temp < arr[j]; j--)
{
arr[j + 1] = arr[j];
}
arr[j + 1] = temp;
}
}
}