数据分析-Pandas数据分组箱线图

数据分析-Pandas数据分组箱线图

数据分析和处理中,难免会遇到各种数据,那么数据呈现怎样的规律呢?不管金融数据,风控数据,营销数据等等,莫不如此。如何通过图示展示数据的规律?

数据表,时间序列数据在数据分析建模中很常见,例如天气预报,空气状态监测,股票交易等金融场景。数据分析过程中重新调整,重塑数据表是很重要的技巧,此处选择Titanic数据,以及巴黎、伦敦欧洲城市空气质量监测 N O 2 NO_2 NO2数据作为样例。

数据分析

数据分析-Pandas如何转换产生新列

数据分析-Pandas如何统计数据概况

数据分析-Pandas如何轻松处理时间序列数据

数据分析-Pandas如何选择数据子集

数据分析-Pandas如何重塑数据表-CSDN博客

本文用到的样例数据:

Titanic数据

空气质量监测 N O 2 NO_2 NO2数据

样例代码:

源代码参考 Pandas如何重塑数据表

源代码参考 python数据分析-数据表读写到pandas

导入关键模块

python 复制代码
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

plt.close("all")

画箱线图

除了df.plot.box 画图以外,还有一种方法,就是df.boxplot() 方法。一样可以画箱线图表达出最大值,最小值,中位数等信息,以下是调用的样例:

python 复制代码
df = pd.DataFrame(np.random.rand(10, 5))

plt.figure();

bp = df.boxplot()

分组箱线图

如果还想设置分组,例如,前5行为A组,后5行为B组,可以一并显示,例如:

python 复制代码
df = pd.DataFrame(np.random.rand(10, 2), columns=["Col1", "Col2"])

df["X"] = pd.Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"])

plt.figure();

bp = df.boxplot(by="X")

更复杂一点的分组,这里为2种分组,自行琢磨下。如下:

python 复制代码
df = pd.DataFrame(np.random.rand(10, 3), columns=["Col1", "Col2", "Col3"])

df["X"] = pd.Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"])

df["Y"] = pd.Series(["A", "B", "A", "B", "A", "B", "A", "B", "A", "B"])

plt.figure();

bp = df.boxplot(column=["Col1", "Col2"], by=["X", "Y"])

其实分组,对于df.plot.box() 也可以用的,图像略有差异

python 复制代码
df = pd.DataFrame(np.random.rand(10, 3), columns=["Col1", "Col2", "Col3"])

df["X"] = pd.Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"])

plt.figure();

bp = df.plot.box(column=["Col1", "Col2"], by="X")

以上代码只是一个简单示例,示例代码中的表达式可以根据实际问题进行修改。

后面介绍下其他的展示形式。

觉得有用 收藏 收藏 收藏

点个赞 点个赞 点个赞

End

GPT专栏文章:

GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案

GPT实战系列-LangChain + ChatGLM3构建天气查询助手

大模型查询工具助手之股票免费查询接口

GPT实战系列-简单聊聊LangChain

GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(二)

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(一)

GPT实战系列-ChatGLM2模型的微调训练参数解读

GPT实战系列-如何用自己数据微调ChatGLM2模型训练

GPT实战系列-ChatGLM2部署Ubuntu+Cuda11+显存24G实战方案

GPT实战系列-Baichuan2本地化部署实战方案

GPT实战系列-Baichuan2等大模型的计算精度与量化

GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF

GPT实战系列-探究GPT等大模型的文本生成-CSDN博客

相关推荐
wh_xia_jun12 小时前
基础分类模型及回归简介(一)
分类·数据挖掘·回归
淦暴尼14 小时前
基于spark的二手房数据分析可视化系统
大数据·分布式·数据分析·spark
ClouGence21 小时前
CloudCanal + Apache Paimon + StarRocks 实时构建湖仓一体架构
后端·数据挖掘·数据分析
SickeyLee21 小时前
对比分析:给数据找个 “参照物”,让孤立数字变 “决策依据”
信息可视化·数据挖掘·数据分析
李昊哲小课1 天前
K近邻算法的分类与回归应用场景
python·机器学习·分类·数据挖掘·回归·近邻算法·sklearn
摸鱼仙人~2 天前
现代人工智能综合分类:大模型时代的架构、模态与生态系统
人工智能·分类·数据挖掘
麻雀无能为力2 天前
CAU数据挖掘第四章 分类问题
人工智能·分类·数据挖掘·中国农业大学计算机
蓝婷儿2 天前
Python 数据建模与分析项目实战预备 Day 4 - EDA(探索性数据分析)与可视化
开发语言·python·数据分析
王小王-1232 天前
基于Python的物联网岗位爬取与可视化系统的设计与实现【海量数据、全网岗位可换】
python·物联网·数据分析·计算机岗位分析·大数据岗位分析·物联网专业岗位数据分析
万粉变现经纪人2 天前
如何解决pip安装报错ModuleNotFoundError: No module named ‘tkinter’问题
python·beautifulsoup·pandas·pip·策略模式·httpx·scipy