数据分析-Pandas数据分组箱线图

数据分析-Pandas数据分组箱线图

数据分析和处理中,难免会遇到各种数据,那么数据呈现怎样的规律呢?不管金融数据,风控数据,营销数据等等,莫不如此。如何通过图示展示数据的规律?

数据表,时间序列数据在数据分析建模中很常见,例如天气预报,空气状态监测,股票交易等金融场景。数据分析过程中重新调整,重塑数据表是很重要的技巧,此处选择Titanic数据,以及巴黎、伦敦欧洲城市空气质量监测 N O 2 NO_2 NO2数据作为样例。

数据分析

数据分析-Pandas如何转换产生新列

数据分析-Pandas如何统计数据概况

数据分析-Pandas如何轻松处理时间序列数据

数据分析-Pandas如何选择数据子集

数据分析-Pandas如何重塑数据表-CSDN博客

本文用到的样例数据:

Titanic数据

空气质量监测 N O 2 NO_2 NO2数据

样例代码:

源代码参考 Pandas如何重塑数据表

源代码参考 python数据分析-数据表读写到pandas

导入关键模块

python 复制代码
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

plt.close("all")

画箱线图

除了df.plot.box 画图以外,还有一种方法,就是df.boxplot() 方法。一样可以画箱线图表达出最大值,最小值,中位数等信息,以下是调用的样例:

python 复制代码
df = pd.DataFrame(np.random.rand(10, 5))

plt.figure();

bp = df.boxplot()

分组箱线图

如果还想设置分组,例如,前5行为A组,后5行为B组,可以一并显示,例如:

python 复制代码
df = pd.DataFrame(np.random.rand(10, 2), columns=["Col1", "Col2"])

df["X"] = pd.Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"])

plt.figure();

bp = df.boxplot(by="X")

更复杂一点的分组,这里为2种分组,自行琢磨下。如下:

python 复制代码
df = pd.DataFrame(np.random.rand(10, 3), columns=["Col1", "Col2", "Col3"])

df["X"] = pd.Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"])

df["Y"] = pd.Series(["A", "B", "A", "B", "A", "B", "A", "B", "A", "B"])

plt.figure();

bp = df.boxplot(column=["Col1", "Col2"], by=["X", "Y"])

其实分组,对于df.plot.box() 也可以用的,图像略有差异

python 复制代码
df = pd.DataFrame(np.random.rand(10, 3), columns=["Col1", "Col2", "Col3"])

df["X"] = pd.Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"])

plt.figure();

bp = df.plot.box(column=["Col1", "Col2"], by="X")

以上代码只是一个简单示例,示例代码中的表达式可以根据实际问题进行修改。

后面介绍下其他的展示形式。

觉得有用 收藏 收藏 收藏

点个赞 点个赞 点个赞

End

GPT专栏文章:

GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案

GPT实战系列-LangChain + ChatGLM3构建天气查询助手

大模型查询工具助手之股票免费查询接口

GPT实战系列-简单聊聊LangChain

GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(二)

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(一)

GPT实战系列-ChatGLM2模型的微调训练参数解读

GPT实战系列-如何用自己数据微调ChatGLM2模型训练

GPT实战系列-ChatGLM2部署Ubuntu+Cuda11+显存24G实战方案

GPT实战系列-Baichuan2本地化部署实战方案

GPT实战系列-Baichuan2等大模型的计算精度与量化

GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF

GPT实战系列-探究GPT等大模型的文本生成-CSDN博客

相关推荐
smilejingwei1 小时前
数据分析编程第二步: 最简单的数据分析尝试
数据库·算法·数据分析·esprocspl
高级测试工程师欧阳2 小时前
python中selenium怎么使用
python·pandas
Chandler_Song5 小时前
【Python代码】谷歌专利CSV处理函数
开发语言·python·pandas
派可数据BI可视化5 小时前
解读商业智能BI,数据仓库中的元数据
大数据·数据仓库·数据分析·spark·商业智能bi
阿里云大数据AI技术19 小时前
鹰角网络基于阿里云EMR Serverless StarRocks的实时分析工程实践
数据库·数据分析
Gloria_niki1 天前
机器学习之数据预处理学习总结
人工智能·学习·机器学习·数据分析
胡耀超1 天前
机器学习数学基础与商业实践指南:从统计显著性到预测能力的认知升级
人工智能·python·机器学习·数据挖掘·数据分析·数据科学·统计学
杨荧1 天前
基于Python的反诈知识科普平台 Python+Django+Vue.js
大数据·前端·vue.js·python·数据分析
云天徽上2 天前
【数据可视化-94】2025 亚洲杯总决赛数据可视化分析:澳大利亚队 vs 中国队
python·信息可视化·数据挖掘·数据分析·数据可视化·pyecharts
电商API大数据接口开发Cris2 天前
Java Spring Boot 集成淘宝 SDK:实现稳定可靠的商品信息查询服务
前端·数据挖掘·api