数据分析-Pandas数据分组箱线图

数据分析-Pandas数据分组箱线图

数据分析和处理中,难免会遇到各种数据,那么数据呈现怎样的规律呢?不管金融数据,风控数据,营销数据等等,莫不如此。如何通过图示展示数据的规律?

数据表,时间序列数据在数据分析建模中很常见,例如天气预报,空气状态监测,股票交易等金融场景。数据分析过程中重新调整,重塑数据表是很重要的技巧,此处选择Titanic数据,以及巴黎、伦敦欧洲城市空气质量监测 N O 2 NO_2 NO2数据作为样例。

数据分析

数据分析-Pandas如何转换产生新列

数据分析-Pandas如何统计数据概况

数据分析-Pandas如何轻松处理时间序列数据

数据分析-Pandas如何选择数据子集

数据分析-Pandas如何重塑数据表-CSDN博客

本文用到的样例数据:

Titanic数据

空气质量监测 N O 2 NO_2 NO2数据

样例代码:

源代码参考 Pandas如何重塑数据表

源代码参考 python数据分析-数据表读写到pandas

导入关键模块

python 复制代码
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

plt.close("all")

画箱线图

除了df.plot.box 画图以外,还有一种方法,就是df.boxplot() 方法。一样可以画箱线图表达出最大值,最小值,中位数等信息,以下是调用的样例:

python 复制代码
df = pd.DataFrame(np.random.rand(10, 5))

plt.figure();

bp = df.boxplot()

分组箱线图

如果还想设置分组,例如,前5行为A组,后5行为B组,可以一并显示,例如:

python 复制代码
df = pd.DataFrame(np.random.rand(10, 2), columns=["Col1", "Col2"])

df["X"] = pd.Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"])

plt.figure();

bp = df.boxplot(by="X")

更复杂一点的分组,这里为2种分组,自行琢磨下。如下:

python 复制代码
df = pd.DataFrame(np.random.rand(10, 3), columns=["Col1", "Col2", "Col3"])

df["X"] = pd.Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"])

df["Y"] = pd.Series(["A", "B", "A", "B", "A", "B", "A", "B", "A", "B"])

plt.figure();

bp = df.boxplot(column=["Col1", "Col2"], by=["X", "Y"])

其实分组,对于df.plot.box() 也可以用的,图像略有差异

python 复制代码
df = pd.DataFrame(np.random.rand(10, 3), columns=["Col1", "Col2", "Col3"])

df["X"] = pd.Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"])

plt.figure();

bp = df.plot.box(column=["Col1", "Col2"], by="X")

以上代码只是一个简单示例,示例代码中的表达式可以根据实际问题进行修改。

后面介绍下其他的展示形式。

觉得有用 收藏 收藏 收藏

点个赞 点个赞 点个赞

End

GPT专栏文章:

GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案

GPT实战系列-LangChain + ChatGLM3构建天气查询助手

大模型查询工具助手之股票免费查询接口

GPT实战系列-简单聊聊LangChain

GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(二)

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(一)

GPT实战系列-ChatGLM2模型的微调训练参数解读

GPT实战系列-如何用自己数据微调ChatGLM2模型训练

GPT实战系列-ChatGLM2部署Ubuntu+Cuda11+显存24G实战方案

GPT实战系列-Baichuan2本地化部署实战方案

GPT实战系列-Baichuan2等大模型的计算精度与量化

GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF

GPT实战系列-探究GPT等大模型的文本生成-CSDN博客

相关推荐
菜鸟学Python几秒前
Python 数据分析核心库大全!
开发语言·python·数据挖掘·数据分析
EterNity_TiMe_1 小时前
【论文复现】(CLIP)文本也能和图像配对
python·学习·算法·性能优化·数据分析·clip
CV学术叫叫兽1 小时前
一站式学习:害虫识别与分类图像分割
学习·分类·数据挖掘
HPC_fac130520678166 小时前
以科学计算为切入点:剖析英伟达服务器过热难题
服务器·人工智能·深度学习·机器学习·计算机视觉·数据挖掘·gpu算力
wxl78122714 小时前
如何使用本地大模型做数据分析
python·数据挖掘·数据分析·代码解释器
小尤笔记15 小时前
利用Python编写简单登录系统
开发语言·python·数据分析·python基础
FreedomLeo115 小时前
Python数据分析NumPy和pandas(四十、Python 中的建模库statsmodels 和 scikit-learn)
python·机器学习·数据分析·scikit-learn·statsmodels·numpy和pandas
浊酒南街15 小时前
Statsmodels之OLS回归
人工智能·数据挖掘·回归
穆友航17 小时前
PDF内容提取,MinerU使用
数据分析·pdf
EterNity_TiMe_18 小时前
【论文复现】神经网络的公式推导与代码实现
人工智能·python·深度学习·神经网络·数据分析·特征分析