数据分析-Pandas数据分组箱线图

数据分析-Pandas数据分组箱线图

数据分析和处理中,难免会遇到各种数据,那么数据呈现怎样的规律呢?不管金融数据,风控数据,营销数据等等,莫不如此。如何通过图示展示数据的规律?

数据表,时间序列数据在数据分析建模中很常见,例如天气预报,空气状态监测,股票交易等金融场景。数据分析过程中重新调整,重塑数据表是很重要的技巧,此处选择Titanic数据,以及巴黎、伦敦欧洲城市空气质量监测 N O 2 NO_2 NO2数据作为样例。

数据分析

数据分析-Pandas如何转换产生新列

数据分析-Pandas如何统计数据概况

数据分析-Pandas如何轻松处理时间序列数据

数据分析-Pandas如何选择数据子集

数据分析-Pandas如何重塑数据表-CSDN博客

本文用到的样例数据:

Titanic数据

空气质量监测 N O 2 NO_2 NO2数据

样例代码:

源代码参考 Pandas如何重塑数据表

源代码参考 python数据分析-数据表读写到pandas

导入关键模块

python 复制代码
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

plt.close("all")

画箱线图

除了df.plot.box 画图以外,还有一种方法,就是df.boxplot() 方法。一样可以画箱线图表达出最大值,最小值,中位数等信息,以下是调用的样例:

python 复制代码
df = pd.DataFrame(np.random.rand(10, 5))

plt.figure();

bp = df.boxplot()

分组箱线图

如果还想设置分组,例如,前5行为A组,后5行为B组,可以一并显示,例如:

python 复制代码
df = pd.DataFrame(np.random.rand(10, 2), columns=["Col1", "Col2"])

df["X"] = pd.Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"])

plt.figure();

bp = df.boxplot(by="X")

更复杂一点的分组,这里为2种分组,自行琢磨下。如下:

python 复制代码
df = pd.DataFrame(np.random.rand(10, 3), columns=["Col1", "Col2", "Col3"])

df["X"] = pd.Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"])

df["Y"] = pd.Series(["A", "B", "A", "B", "A", "B", "A", "B", "A", "B"])

plt.figure();

bp = df.boxplot(column=["Col1", "Col2"], by=["X", "Y"])

其实分组,对于df.plot.box() 也可以用的,图像略有差异

python 复制代码
df = pd.DataFrame(np.random.rand(10, 3), columns=["Col1", "Col2", "Col3"])

df["X"] = pd.Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"])

plt.figure();

bp = df.plot.box(column=["Col1", "Col2"], by="X")

以上代码只是一个简单示例,示例代码中的表达式可以根据实际问题进行修改。

后面介绍下其他的展示形式。

觉得有用 收藏 收藏 收藏

点个赞 点个赞 点个赞

End

GPT专栏文章:

GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案

GPT实战系列-LangChain + ChatGLM3构建天气查询助手

大模型查询工具助手之股票免费查询接口

GPT实战系列-简单聊聊LangChain

GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(二)

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(一)

GPT实战系列-ChatGLM2模型的微调训练参数解读

GPT实战系列-如何用自己数据微调ChatGLM2模型训练

GPT实战系列-ChatGLM2部署Ubuntu+Cuda11+显存24G实战方案

GPT实战系列-Baichuan2本地化部署实战方案

GPT实战系列-Baichuan2等大模型的计算精度与量化

GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF

GPT实战系列-探究GPT等大模型的文本生成-CSDN博客

相关推荐
田里的水稻17 分钟前
DT_digital_twin_ROS+Grazebo仿真
深度学习·数据挖掘·数据分析
kangk122 小时前
单细胞转录组分析流程十一(细胞通讯,cellchat,双(多)样本)
数据挖掘·单细胞
我爱鸢尾花2 小时前
第十四章聚类方法理论及Python实现
大数据·python·机器学习·数据挖掘·数据分析·聚类
Tiger Z5 小时前
《R for Data Science (2e)》免费中文翻译 (第14章) --- Strings(2)
数据分析·r语言·数据科学·免费书籍
非著名架构师6 小时前
“低空经济”的隐形护航者:AI驱动的秒级风场探测如何保障无人机物流与城市空管安全?
人工智能·数据分析·疾风气象大模型·高精度天气预报数据·galeweather.cn·高精度气象
洁洁!6 小时前
openEuler在WSL2中的GPU加速AI训练实战指南
人工智能·数据挖掘·数据分析
非著名架构师8 小时前
从“人找信息”到“信息找人”:气象服务模型如何主动推送风险,守护全域安全?
大数据·人工智能·安全·数据分析·高精度天气预报数据·galeweather.cn
clarance20159 小时前
ChatBI王者之争:ThoughtSpot、Databricks、Power BI等五大产品深度对决与选型指南
大数据·人工智能·信息可视化·数据挖掘·数据分析
梦仔生信进阶9 小时前
【Linux】生物信息学Linux入门指南:从核心命令到实战应用
数据分析
Pyeako10 小时前
python中pandas库的使用(超详细)
开发语言·python·pandas