softmax和sigmoid的区别

sigmoid

公式: s i g m o i d ( x ) = 1 1 + e − x sigmoid(x) = \frac{1}{1 + e^{-x}} sigmoid(x)=1+e−x1

函数曲线如下:

导数公式: f ( x ) ′ = e − x ( 1 + e − x ) 2 = f ( x ) ( 1 − f ( x ) ) f(x)\prime = \frac{ e^{-x}}{(1 + e^{-x})^2} = f(x)(1-f(x)) f(x)′=(1+e−x)2e−x=f(x)(1−f(x))

导数曲线如下:

sigmoid代码:

javascript 复制代码
import torch
import torch.nn.functional as F
 
// sigmoid函数
x = torch.tensor([1.0, 2.0, 3.0])
// y = 1 / (1 + torch.exp(-x))	
y = torch.sigmoid(x)
print(f"sigmoid result: {y}")
print(f"sigmoid derivative: {y * (1 - y)}")

softmax

公式:
s o f t m a x ( z i ) = z i ∑ j = 1 n e z j softmax(z_i) = \frac{z_i}{\sum_{j=1}^n e^{z_j}} softmax(zi)=∑j=1nezjzi

指数函数曲线: y = e x y= e^{x} y=ex

  • 引入指数形式的优点:
    指数函数曲线呈现递增趋势,斜率逐渐增大,在 x 轴上一个很小的变化可以导致 y 轴上很大的变化。
  • 引入指数形式的缺点:
    当 z值非常大时,计算得到的数值会变得非常大,可能会溢出。通常针对数值溢出的方法,是将每一个输出值减去输出值中的最大值。

导数公式:

softmax代码:

javascript 复制代码
import torch
import torch.nn.functional as F

def softmax(x):
    """Compute the softmax of vector x."""
    exps = np.exp(x)
    return exps / np.sum(exps) 

// softmax函数
x = torch.tensor([1.0, 2.0, 3.0])
y = F.softmax(x, dim=0)
print(f"softmax result: {y}")
print(f"softmax derivative: {torch.diag(y) - torch.outer(y, y)}")

softmax与cross entropy的联系

事实上,交叉熵与Softmax没有直接的关系。

交叉熵本质是衡量两个概率分布的距离的,而softmax能把一切转换成概率分布。
H ( L , P ) = − ∑ j = 1 n L j l o g ( P j ) H(L,P) = -\sum_{j=1}^nL_jlog(P_j) H(L,P)=−j=1∑nLjlog(Pj)

其中P是预测概率分布,L是真实标签分布。

相关推荐
ゞ 正在缓冲99%…29 分钟前
leetcode101.对称二叉树
算法
YuTaoShao1 小时前
【LeetCode 每日一题】3000. 对角线最长的矩形的面积
算法·leetcode·职场和发展
2zcode1 小时前
基于Matlab可见光通信系统中OOK调制的误码率性能建模与分析
算法·matlab·php
纵有疾風起1 小时前
数据结构中的排序秘籍:从基础到进阶的全面解析
c语言·数据结构·算法·排序算法
纪元A梦1 小时前
贪心算法应用:推荐冷启动问题详解
算法·贪心算法
听风说雨的人儿1 小时前
腾讯面试题之编辑距离
算法
Lululaurel2 小时前
机器学习系统框架:核心分类、算法与应用全景解析
人工智能·算法·机器学习·ai·分类
愚润求学2 小时前
【贪心算法】day8
c++·算法·leetcode·贪心算法
递归尽头是星辰2 小时前
双指针与滑动窗口算法精讲:从原理到高频面试题实战
算法·双指针·滑动窗口·子串/子数组问题
听情歌落俗4 小时前
MATLAB3-1变量-台大郭彦甫
开发语言·笔记·算法·matlab·矩阵