softmax和sigmoid的区别

sigmoid

公式: s i g m o i d ( x ) = 1 1 + e − x sigmoid(x) = \frac{1}{1 + e^{-x}} sigmoid(x)=1+e−x1

函数曲线如下:

导数公式: f ( x ) ′ = e − x ( 1 + e − x ) 2 = f ( x ) ( 1 − f ( x ) ) f(x)\prime = \frac{ e^{-x}}{(1 + e^{-x})^2} = f(x)(1-f(x)) f(x)′=(1+e−x)2e−x=f(x)(1−f(x))

导数曲线如下:

sigmoid代码:

javascript 复制代码
import torch
import torch.nn.functional as F
 
// sigmoid函数
x = torch.tensor([1.0, 2.0, 3.0])
// y = 1 / (1 + torch.exp(-x))	
y = torch.sigmoid(x)
print(f"sigmoid result: {y}")
print(f"sigmoid derivative: {y * (1 - y)}")

softmax

公式:
s o f t m a x ( z i ) = z i ∑ j = 1 n e z j softmax(z_i) = \frac{z_i}{\sum_{j=1}^n e^{z_j}} softmax(zi)=∑j=1nezjzi

指数函数曲线: y = e x y= e^{x} y=ex

  • 引入指数形式的优点:
    指数函数曲线呈现递增趋势,斜率逐渐增大,在 x 轴上一个很小的变化可以导致 y 轴上很大的变化。
  • 引入指数形式的缺点:
    当 z值非常大时,计算得到的数值会变得非常大,可能会溢出。通常针对数值溢出的方法,是将每一个输出值减去输出值中的最大值。

导数公式:

softmax代码:

javascript 复制代码
import torch
import torch.nn.functional as F

def softmax(x):
    """Compute the softmax of vector x."""
    exps = np.exp(x)
    return exps / np.sum(exps) 

// softmax函数
x = torch.tensor([1.0, 2.0, 3.0])
y = F.softmax(x, dim=0)
print(f"softmax result: {y}")
print(f"softmax derivative: {torch.diag(y) - torch.outer(y, y)}")

softmax与cross entropy的联系

事实上,交叉熵与Softmax没有直接的关系。

交叉熵本质是衡量两个概率分布的距离的,而softmax能把一切转换成概率分布。
H ( L , P ) = − ∑ j = 1 n L j l o g ( P j ) H(L,P) = -\sum_{j=1}^nL_jlog(P_j) H(L,P)=−j=1∑nLjlog(Pj)

其中P是预测概率分布,L是真实标签分布。

相关推荐
一匹电信狗8 小时前
【LeetCode_547_990】并查集的应用——省份数量 + 等式方程的可满足性
c++·算法·leetcode·职场和发展·stl
鱼跃鹰飞9 小时前
Leetcode会员尊享100题:270.最接近的二叉树值
数据结构·算法·leetcode
梵刹古音10 小时前
【C语言】 函数基础与定义
c语言·开发语言·算法
筵陌10 小时前
算法:模拟
算法
We་ct11 小时前
LeetCode 205. 同构字符串:解题思路+代码优化全解析
前端·算法·leetcode·typescript
renhongxia111 小时前
AI算法实战:逻辑回归在风控场景中的应用
人工智能·深度学习·算法·机器学习·信息可视化·语言模型·逻辑回归
CoderCodingNo11 小时前
【GESP】C++四级/五级练习题 luogu-P1223 排队接水
开发语言·c++·算法
民乐团扒谱机11 小时前
【AI笔记】精密光时频传递技术核心内容总结
人工智能·算法·光学频率梳
CoderCodingNo11 小时前
【GESP】C++五级/四级练习题 luogu-P1413 坚果保龄球
开发语言·c++·算法
2301_8223663512 小时前
C++中的命令模式变体
开发语言·c++·算法